
z

oo 0
-I

z W

Technical Report 839

NETWORK DESIGN TOOL FOR EHF
SATELLITE COMMUNICATIONS NETWORKS

Sally Norvel!
G. J. Brown

June 1983

Final Report

AUG 2 5 1983jLA
Approved for public release; distribution unlimited

NAVAL OCEAN SYSTEMS CENTER
-' San Diego, California 92152

F=22 048'- ------

NAVAL OCEAN SYSTEMS CENTER, SAN DIEGO, CA 92152

AN ACTIVITY OF THE NAVAL MATERIAL COMMAND

JM PATTON, CAPT, USN HL BLOOD
Commander Technical Director

ADMINISTRATIVE INFORMATION

The work covered by this report was done during the period of January to September
1982 under the Independent Research/Independent Exploratory Development program.

Released by Under authority of
M.S. Kvigne, Head H.D. Smith, Head
Communications Research Communications Systems

and Technology Division and Technology Department

-. - - - - - - - -

UNCLASSIFIED
SECURITY CL ASSIFICATION OF THIS rAGE (en Date Entered)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
". REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

NOSC Technical Report 839 (TR 839)

4. TITLE (a SLbt,,.) S. TYPE OF REPORT a PERIOD COVERED

NETWORK DESIGN TOOL FOR EHF SATELLITE Final ReportJanuary to September 1982
COMMUNICATIONS NETWORKS 6. PERFORMING ORG. REPCRT NUMvSER

7. AUTIHOR(&) 9. CONTRACT OR GRANT NUMBER(O)

Sally Norvell, GJ. Brown

9. PERFORMING ORGANIZAT.ION NAME AND ADDRESS I0. PROGRAM ELEMENT, PROJECT TASK
AREA A WORX UNIT NUMBERS

Naval Ocean Systems Center
San Diego, CA 92152

I I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
June 1983

13. NUMBER OF PAGES

158
14. MONITORING AGENCY NAME & ADDOESS(If different from Controlling Office) iS, SECUR;TY CLASS. (of thfs report)

Unclassified

mSe. DECLASSIFICATION, DOWNGRAOING
SCHEDULE

16. DI' TRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRISUTION STATEMENT (of the abotract *,teted In Block 20. II dlfferar.t from Report)

lt. SUPPLEMENTARY NOTE&

IS. K E WORDS (Continua on revere* aide It neeeeary aid Identify by block number)

Network Design Tool (NDT)
Network Switching Center (NSC)
GRINDER (Graphical interactive Network Designer)

20. ABSTRACT (Continue on reverea aide if necessary and Identify by bloc nu-e)

This report describes the design concept of the Network Design Too:. The design is based or currently
available modeling and analysis t'chniques and the techniques, along with available network design tools, are
surveyed. The limitations of the available design toois are discussed as well as the two major network design
problems, the topological design/ontimization problem and the protocol ddation problem. The Network Design
Tool for the EHF satellite communications networks is presented.

DD t JAN 1473 EDITIUN OF I NC, eS IS OBSOLETE UNCLASSIFIED

5N 0102- LF, 014. 6601 SECURITY CLASSIFICATION OF TH:S SAGE (WShen Data Entered;

---, ~=~ ,--,--.-- -

ACRONYMS AND GLOSSARY

ACEX Area-Code/Exchange

ACT Analyst Control Terminal
'4 .4

ACUT Automated Cut Saturation Algorithm

AHPL A discrete system, descriptive/design language

ALGOL Algebraically Oriented Language (algorithmic language)

APL Advanced Programming Language

ARPAN r Advanced Research Projects Agency Network
.1

ASG Assign

AUTODIN Automated Digital Information Network

BGS Developers of the POD System

BKBN Backbone Node

BXC Branch Exchange

CA Capacity Assignment .

CBE Concave Branch Elimination ACC - ,.)fl

CDMA Code Division Multiple Access

CFA Capacity and Flow Assignment " .

CNTR Center

-. COM Center of Mass "•,o
CONC Concentrator.

CPU Central Processing Unit

DAMA Demand Assigned Multiple Access \ .ir
DASG Deassign

DCDL A discrete system, descriptive/design language

* DFSS Data Flow Simulation System

DYNAMO A simulation programming language

II

, • .

IJI

ACRONYMS AND GLOSSARY (Continued)

EF Extremal Flow Algorithm

EHF Extremely High Frequency

FA Flow Assignment
.4,

FD Flow Deviation

GASP Fortran-based simu*.ation package

GLAD Component of GRINDER

GMB Graph Model of Behavior

GMC Graph Model of Computation

GPSS General Purpose System Simulation

GRINDER Graphical Interactive Network Designer

C-RST Ground Station node

HIER Component of GAINDER

HOME Homing Point

IMP Interface Message Processor

ISI Information Science Institute (USC)

ISIA Information Science Institute Computer

ISO-OSI International Standards Organization-Open Systems Interconnection

ISP A discrete system, descriptive/design language '

LD idgrangian Decomposition

LL Line Layout

LOC Location Identifier

MIDAS A simulation programming language

MIND Modular Interactive Netwcrk Design System

MIT Massachusetts Institute of Technology

MLSS Multipoint Line Simulation System

%ii

ACRONYMS AND GLOSSARY (Continued)

MPDL A discrete system, descriptive/design language

MPL Multischedule Private Line

MST Minimum Spanning Tree

NAC Network Analysis Corporation

NDT Network Design Tool

NSC Network Switching Center

PHDB Project History Data Base

PLT Piecewise Linear Tariff Structure

POD Performance Oriented Design

SARA System Architects' Apprentice

SATL Satellite node

SC Subscriber computer

SI'ULA A simulation programming language

SIMSCRIPT A simulation programming language

V SOL Sequence Orders List

TCFA Topology, Capacity and Flow Assignment

TCU T-ryial Control Unit

TDMA Time Division Multiple Access

TLPK Telpak (speed dependent tariff structure)

TOPO Topological Design and Analysi.s

UCLA University of California - Los Angeles

VANS Value Added Network Simulator

iii

. , -..7

CONTENTS

1. INTRODUCTION ... page1

Purpose and Goals 1. .

Network Description . . . 1

Node Description . . . 4

Definition of Analysis and Design Problems . . . 5

The Real Network . . . 10

2. SPECIFIC APPROACHES TO NETWORK DESIGN AND ANALYSIS . . • 12

Queueing Models . . . 12

Stochastic Models . . . 20

Graph Theory " " 24

Finite State Descriptions . . . 30

Approximation Techniques . . . 31

Hybrid Schemes ... 37

Modular Schemes . . . 38

Discrete-Event Simulation . . . 43

On-Line Simulation . . . 52

Testbed Approach ... 53

Parallel Processors . . . 54

3. TOPOLOGICAL DESIGN AND OPTIMIZATION TECHNIQUES . . . 59

Topology Design Problem . . . 59

The Capacity Assignment Problem. . . 64

Traffic Flod Assignment Problem . . . 66

Capacity and Flow Assignment Problem • • . 66

CFA Problem . . . 67

TCFA Problem . . . 68

Centralized Network Design . . . 71
Distributed Network Design . . . 74

4. PROTOCOL VALIDATION TECHNIQUES . . . 77

Introduction . . . 77

Protocol Models . . . 77

v

CONTENTS (Continued)

Protocol Validation . . . 80

Validation Methods . . . 82

5. AVAILABLE DESIGN TOOL. . . 87

MIND . . . 87

POD TOOL . . . 109

SARA . . . 113

GRINDER . . . 119

Traffic Editor . . . 120

Tariff Editor . . . 122

ACUT . . . 123

GLAD . . . 126

fIER . . . 127

ROUT . . . 130

6. SUGGESTED APPROACH FOR NETWORK DESIGN TOOL . . . 139

The EHF Network Design Problem . . . 139

Network Design Tool Approaches . . . 140

Network Design Tool Outline . . . 145

REFERENCES AND BIBLIOGRAPHY * . , 149

ILLUSTRATIONS

1. Components of the network design problem . . . page 3

2, ISO-OSI reference model . . . 4

3. Isolation of routing algorithm using layered architecture . . . 5

4. Network model . . . 6

5. Switching schemes . . . 8

6. Access scheme tree . . . 9

7. Routing scheme tree . . . 10

8. Flow control schemes . . . 11

9. Network of queues . . . 15

vi

ILLUSTRATIONS (Continued)

10. M/M/1 queue . . . 16

11. Minimum spanning tree . . . 25

12. Possible ways to connect nodes . . . 26

13. Basic transition types of E-nets . . . 29

14. Petri net . . . 30

15. Finite state moel of a simple transmission medium . . . 31

16. Simple aggregate/subsystem decomposition of a queuing network . . . 34

17. Norton's equivalent applied to a queuing network . . . 36

* 18. A two level hierarchy: backbone and local access network . . . 62

19. (a) Shortest tree; (b) Steiner minimal tree . . . 72

20. Network architectures , . . 93
21. MIND architectures . . . 94

22. Message life cycle and performance measures . . . 100

23. Control graph .. 118

24. Network design tool applications . . . 140

25. Resource design . . . 142

* 26. Channel access model for the satellite allocation problem . . . 143

27. Channel access model . . . 143

28. Network design tool architecture . . . 145

29. Network testbed 148

TABLES

1. Computer network classifications . . . 2

2. Network optimization problems . . . 7

3. Network design/analysis approaches . . . 13

4. Parametric input to the VANS system . . . 39

5. Parametric input to the VANS system . . . 41

6. Programming languages for network simulation . . . 44

7. Comparison of some protocol verification techniques . . . 83

8. Design tool capabilities . 88

vii

S-Ltp ~ - -

IL

CHAPTER 1

INTRODUCTION

PURPOSE AND GOALS

This document describes the design concept of the "Network Design Tool.*

The Network Design Tool (NDT) is a collection of analytical techniques, algo-

rithms and simulation methods that may be used to characterize the performance

of a computer communication network. Much work has been done over the past

several years in network performance analysis and many techniques have been

developed or proposed. Each of these methods applies to a particular aspect

of the network design and is based on a particular modeling point of view. We

define the comnuter communication network and then describe the different ways

the network may be modeled. Each network model is related to the particular

design problem being addressed. The various analytical approaches are briefly

described and their relationship to the network models discussed.

Chapter 2 is a survey of the major approaches to specific network design

problems ahile Chapters 3 and 4 discuss two fairly well defined areas of

network analysis: topological design/optimization and protocol validation.

Chapter 5 is a survey of network design tools presently available locally or
on the Advanced Research Projects Agency Network (ARPANET). Finally, Chapter

6 presents an outline of the NDT specification.

NETWORK DESCRIPTION

A discussion of network analysis is impossible without first defining

what a network is. A network may mean entirely different things to different

people. One person may view a network as a switching scheme where another may

view it as an access scheme. For our purposes we define a computer communica-

tions network as a set of two or more computer nodes interconnected by com-
munication links to provide services for a host function. A node may be a

host that is responsible for command and control functions or it may be re-

sponsible only for communication functions. We are concerned here with only -

the communication functions.

A-

A network may be viewed many ways, depending on the viewer's particular

interest. A manager may be most interested in how and where the network nodes

are located, whereas a designer may be concerned about the switching tech-
nique. Networks may be classified by services provided, routing schemes,

access methods, switching techniques, topology capacity or communication

characteristics. The computer communication network classifications are sum-

marized in Table 1. The table shows that the networl- design problem actually

Viewpoint Viewer's Interest Model categories

Functional Type of host access service provided - Remote access net
terminal access or batch, user to one Value added net

host, user to any host, host to host. Mission oriented
net

Switching Node interconnection technique Circuit switched

(Designer) Message switched
Packet switched
Hybrid switched

Manager Topology, capacity, Centralized

(Facilities congestion and reliability Decentralized

Placement) Distributed

Operational 1 Routing and flow control Deterministic
Stochastic
Adaptive/non-

adaptive

Communication Communicating components and communi- Resource sharing
cation characteristics Distributed

Computations

Remote
Communications

Operational 2 Access Control Centralized
Decentralized

Adaptive

Hybrid 1 Routing and Topology

Hybrid 2 Routing and Access

Hybrid 3 Access and Switching

Table 1. Computer network classifications.

2

consists of several separate problems that are coupled together, namely

1. Topological design (including channel capacity and flow)

2. Switching design

3. Access control

4. Routing

5. Flow control

Figure 1 illustrates how these elements may be treated ir, a top down

fashion, from the highest level viewpoint (topology) to the lowest (protoccl

validation). Of course these elements ire not so neatly separated and, in

fact, they must be integrated at some point in the design. The figure also

TOPOLOGICAL
DESIGN (INCLUDING

NET CONTROL
PLACEMENT)

- SWITCHING

ROUTING ACS

CONTRO0L

INTO
PROTOCOLS

VALIDATION

Figure 1. Components of the network design problem.

shows that the designs must be put into the form of well defined piocedures

(protocols) that are then checked for correct operation using formal valida-

tion techniques.

3

L9

NODE DESCRIPTION

The topological design and switching design problems can assume a fairly

high level model where each node is just a source, sink or redirector of

traffic, as determined by a node genie. The lower level design problems and

generation of protocols require a more detailed description of the node it-

self. This is provided by the layered architecture suggested by the Inter-

national Standards Organization-Open Systems Interconnection (ISO-OSI) refer-
2

ence model. The model, shown in Figure 2, defines an architecture that

separates the protocols into a logical order (layers) where a layer communi-

cates only with the layer immediately above and below it. The communication

aspects of the node are contained in layers 1 through 4 (communications sub-

network). Switchinc,, routing and access control are contained in these

layers.

7 APPLICATION END USER SERVICES

6 PRESENTATION DATA ENTRY, FORMATTING

5I
AND ADMINISTRATION (BILLING)

4 TRANSPORT END-TO-END MESSAGE INTEGRITY

) SWITCHING

3 [NETWORK /ROUTING ANL RELAYING

2 LINK CONTROL ACCESS, LINK SYNCRONIZATION,
L ERROR CONTROL

1 PHSICA 4 -------- No.TO/FROM OTHER NODES1 PHYSICAL v (PHYSICAL LINK)

Figtre 2. ISO-OSI reference model.

4

- -."- -.-----. -.- •.

- -

The value of the layered architecture may be seen by the following

example using a packet routing scheme. To support a packe't switching scheme,

the node must perform a variety of tasks including message reconstruction, oil

packet acknowledgement and channel access. Using the layered architecture,

the routing algorithm by itself may be considered, as in Figure 3. The net-

work layer sees only packets coming from or goinig to the transport layer. It

communicate3 with the routing protocols (peer level communications) at other o

nodes on a virtual cjannel that actually corresponds to the lower layers and

the physical channel.
.4

The network design techniques presented in this report are best applied

to systems that follow the layered architecture. -l

PACKETS TO/FROM TRANSPORT LAYER

1U I PACKETS TO/FROM
"(NETWORK LAYER) R - -- OTHER NODES (VIRTUAL

CHANNEL)

Figure 3. Isolation of routing algorithm using the layered architecture.

DEFINITION OF ANALYSIS AND DESIGN PROBLEMS "1

The previously mentioned design problems are described next in more

detail.

Topological Design

Figure 4 shows the usual network model for the topological design prob-

lem. The model consists of N nodes, which may be used to switch pac'cets or

messages or to form circuits, and M circuits,. which are noiseless and bi-

directional with capacity Ci bits per second. The nodal processing time is

constant and is usually assumed negligible. Messages may originate external

to the network or at another node. All messages are assumed to have lengths

independently drawn from an exponential distribution. The time to service a

message depends on its length and the fixed parameters of the channels.

5

CI

C4 C5

NODAL PROCESSING TIME K

Figure 4. Network model.

There are three basic design parameters for this network:

1. Selection of the channel capacities (Ci)

2. Selection of the channel flows (Xi)

3. Placement of the nodes (topology)

The performance criterion is the average message delay, T. There is also a

cost constraint, D.

The optimization problems are summarized in Table 2. These four problems

have been solved to various degrees, depending on the form of the cost func-

tion. Software packages are available (see Chapter 5) for performing the

optimizations.

Switching Design

Circuits from a source node to a destination node may be formed by

switching intermediate segments to form one continuous route. This switching

6

0 41

'A H- 0
1 0

00

RU1

E-4 E-0

0 .4.0

4) ~ L A

0 49

V4)
N0 .4

C4 A4)

-~~~~~~~~ -. --- ,-

...

may be done on a long term basis (the du .ation of the service) as in circuit

switching. The route may be reconfigured on every message (message switching)

or more frequcntly (packet switching). More importantly, oacket switching p

allows a mix of message traffic to share a charnel, whereas in circuit switch-

ing a short message may have to wait while a long message is being trans-
3

mitted. A common tradeoff is between circuit switching and packet switching.

With the proper assumptions (see Reference 3), an approximate solution to this

problem may be found by iteratively solving a nested sequence of related-

integer linear capacity flow equations. The switching design depends upon

many factors including traffic statistics, channel quality, delay require-

ments, switching node complexity, buffer sizes and channel cost. The param-

eters involved are packet lengths, buffer lengths and message delay. Fi'ovxe 5

outlines the switching alternatives.

CIRCUIT SWITCHING

STORE & FORWARD

MESSAGE SWITCHING -

NON-STORE & FORWARD

PACKET SWITCHING (STORE & FORWARD '

VIRTUAL CIRCUI T SWITCHING

Figure 5. Switching schemes.

Access Design

A discussion of switching naturaily leads to the access design problem, i.e.,

the question of how multiple users share a single channel resource. Literally

hundreds of access techniques and variations have been described in the liter-

ature. The usual design tradeoff shows traffic intensity versus packet delay

(for packet switching), or traffic intensity versus blocking probability (for

message or circuit switching) and throughput versus offered traffic load. The

performance analysis has been done using both simulation and analytical tech-

niques. The theory or probability and stochastic processes and queueing

theory have been used to solve problems when certain assumptions have been

made. The assumptions usualliy are: all users are statistically identical,

i _ ,

independent Poisson sources and buffers are of infinite capacity. Reference 4

provides a good survey of access uchemes and analysis. The reference organ-

izes the schemes a3 outlined in Figure 6.

PDMA
FIXED ASSIGNMENT TECHNIQUES TOMA

CENTRALIZED (STATIC) < TDMA

RESERVATION

DEMAND ASSIGNMENT PCLLING

PROBING (ADAPTIVE POLLING)

SLOTT ALOHA NON-PERSISTENT

RANDOM ACCESS ED CARRIER SENSE - P-PERSISTENT
DSIT UNSLOTTED7 ALOHA NON-PERSISTENT

CT CARRIER SENSE -dP-PERSISTENT
TOKEN PASSING

RESERVATION ALOHA
DEMAND ASSIGNMENT FIFO RESERVATION

SLOT HANDOFF

SLOT HANDOFF/ALOHA

HYBRIDSCHEMES URN SCHEME

RESERVATION UPON COLLISION

Figure 6. Access scheme tree.

Routing Design

Although the routing design affects the access, switching and topology

designs, it is treated somewhat independently for simplicity. The routing

problem is to select the best route (least delay) from source to destination.

If a flow and channel capacity optimization has been performed, then the

routing algorithm must be designed to fit that optimization. The topology and

the distribution of control may constrain the routing design. A diagram of

this relationship is shown in Figure 7 (from Reference 1). Since most routing

algorithms are derived in an ad hoc fashion and involve transactions between

multiple nodes, analytical methods are difficult to use and simulation is the

usual method for analysis.

9

-,.". , _, . ; , , , .. , . . : , - , -a

FIXED RCUTING
CENTRALIZED NETWORK ROUTING CENTER

IDEAL OBSERVkR

NETWORK TOPOLOGY COOPERATIVE UPDATING

UPDA-ED ROUTING TABLE PERIODIC UPDATING
ASYNCHRONOUS UPDATING

ISOLATED ROUTING WITH LOCAL DELAY ESTIMATES

DISTRIBUTED ISOLATED ROUTING WITH SHORTEST QUEUE

SRANDOM ROUTING

FLOODING WITH PROBABILITY P

FLOODING FULL FLOODING
ADAPTIVE FLOODING

Figure 7. Routing scheme tree.

An analytical technique that has had Rome success is the use of graph
5

theory for both the design and analysis of optimum fixed routing schemes.

Flow Control

A packet switched network must control the rate of admission of packets

into the network to avoid overly congesting the network. These rules are

known as flow control procedures. Flow control procedures are local, limiting

packet admission at a node and global, limiting the total number of packets in

the network. Flow control, like routing, is difficult to analyze and simu-

lation is often used. Figure 8 shows the basic flow control alternatives.

THE REAL NETWORK

There are several design issues that are not addressed by analysis tech-

niques. Generally they require custom designed simulations to address their

unique requirements. These issues arise in real communication networks,

10

L.

LOCAL

FLOW CONTFOL

END-TO-END

GLOBAL

ISARITHMIC

Figure 8. Flow control schemes.

especially military communication networks. Those design issues typically

ignored include the followirg:

I. Dynamic topologies

2. Node destruction

3. Jamming

4. Noisy links

5. Transient results

6. Multilevel priorities

7. Preemption

8. Control transfer (survivability)

The available network design packages, described in Chapter 5, do not

have the capabilities to handle these design issues. The proposed Network

Design Tool, described in Chapter 6, is designed to address these complex

issues.

11•

Is

L"

. ,+ -.. - - . - r. r + • . -, - - - 1

CHAPTER 2

SPECIFIC APPROACHES TO NSTWORK DESIGN AND ANALYSIS

Several modeling techniques are used to study computer communication

networks. First, there are theoretical models that are often used as a basis

for analyzing computer networks. Then, since most work in computer networks

is based on a theoretical queueing theory model, there are queueing theory and

models based on networks of queues. Another set of powerful analytical tools

is provided by the theory of stochaotic processes. This includes renewal

theory, Harkov chain theory, semi-Markov and regenerative processes and Markov

decision theory. Next, there is the potential application of graph theory to

,aetwork design and analysis. We also discuss here finite state descriptions.

Since theoretic4 mod-ls may nat always have solutions which can be j
obtained in -inite tide, approximations to theoretical models and solution

techniques to these approximations have been developed. Several approximation

., and solution techniques are presented here. The next set of models is not

' analytical. This set int.ludes simulation techniques, hybrid techniques and

modular techniques. Also included are on-line simulation, a testbed approach

and an approach which uses parallel processors to emulate communication net-

works. These approaches are tabulated in Table 3.

QUEUEING MODELS W

The growing complexity of computer systems has motivated the development

of analytic tools to investigate computer system performance. A queueing

network model is the most widely used approach in the design and analysis of

communication networks. If desired, very complex systems can be characterized

by a few parameters if certain simplifying assumptions are made. Anticipated

or proposed changes to the system can be represented by adjusting some of the

parameter values. Queueing network models have proven effective in predicting p
% the effects of changes on system performance.

The accuracy of analytic models and the amount of detail of a system they

can capture are restricted by their computational solution algorithms.

12
An

* - * ... * . ~

* In

0 .4

0 r
V* V. wS

'1,4 r4 VS4 1 H(

0)r4 0H : 4 r4 4 0
fa H

0 H1 44 $

41 4I H -H 441 . *41* H' 4)4
0 0 004) 0

4) ~ ~ $ 4) 04 4
0 0 oO0 4J' 0

b4 0 FA ~ 41 140,. 0. 10

H 0441 D4

4j4

H H4 H1- 0

H r.0 4
UU 400 4410

04 -4U 0) 3 14 0
or 4.) .4) - P
*- FHA 0)H

H. H HH rC4 440 W

V) 4) N4~ 4

A. C3 94 I 1 @4, . 41O
4 j4 trJ 44H) 1

V 0 .4 FA 0 0
to4 4 j .H04 4 0 .4

HO 04 U q H
I 114 44 4J 401 >O 'b4

4 o $ 0 r ~0 4.) 4 0 Q
P4 014 0 u ccU 04 04

4) 4) 4J0 4. 4. 04% d jt
z I - 00

0~~~~~4 Hd04 a t)-.

u 0 4

w H0 I4Ho 0 (d
Oi 00. $1- I r4N 4r W 4.) 0) 1r49

z. 00 00 04 H1. 44 0 .

>13

-.. q- *wY.-Y W~W"U Y. -rr-r '~ wr~u *.Y..,.-.--r~7 .r --- r-r- -r

* S S *.. .. .o

Ao C

Ut

0. r- 0 AA

4J . .) S.-

0 0 H-1
o~ ~ 4 ~ i
43 41CO ~ 4 to 0
o 0 pC 4i 0

Hr U- 0 1
O 6. 14 $.61 44Jw

to (d 41 a 6.44 -

&4 6 A. u 4 4 41
94 0) E-4>I

$4 3 49 P 6of 00 O4Ri W I
00 0 4 4)SIa 0

lkw) V to)PC Ad f

- 6

0) la V I

w d.1 1 S1 Hw1 -
r-4 0 , im 03 :s4 0

.94g a C- IU.9 W 14 to A
U h.. E-4 r 4) - - 4 0a

0)0)A 0L)4 to V 94S -4 0 HN

>> 6

r- %S4 0 4 0 0 v
.9H 0S OM 4)V

Vo d 2 U 94 00

U) r4) J 4 tq) 494 04 U4

0~~~ t4"' U06

4) 0
r4i Q$4 A to$~C 41 'A

z Uo V 0- C U
O4 0 01 0 00

.0 6 9 0 09 Q u9 .9 4 w9
> 4) 4)0) S4) 04) o o

C 0 0C 0 05 0
0 4 4- 4)00J 4
$a 4) 0 IV i.0 4) CUto
0 k .4>.' O>*. 4 9 6 HCq$

Qj 0MW InC Cu) Ow 4 00

14

However, .lice the solution algorithms are fairly general within their re-

strictions, one particular solution can be applied to a wide spectrum of

modQls. Thus, analytic models can be designed and implemented very quickly.

Also, some of their solution algorithms are computationally very efficient.

Queueing theory plays a key role in the quantitative understanding of

computer-communication networks. Queues develop at each concentration point

(node) in the network as messages arrive and wait for service. In fact,

queueing while waiting for service is one of the primary factors in the time

delay that messages encounter in traversing a network.

The actual queueing delay encountered depends on the statistics of the

messages arriving and the so-called service discipline - the way in which i
messages are hcndled at each concentrator. The overall network itself can be

visualized as an interactive network of queues. A queueing network consisting

of two nodes is shown in Fig're 9. The concentration and buffering aspects of

network design, as well as routing, flow control and other overall network

operating characteristics, depend critically on an understanding of queueing

theory for their quantitative characterization.

II
_ DEVICE

Figure 9. Network of queues.

Lis

15

K- - . a *4- 4,- -4,

Queueing systemo can be used to model processes in which customers ar-

rive, wait their turn for service, are serviced and then depart. Queueing

systems can be characterized by five components:

1. The interarrival-time probability density fwiction

2. The service-time probability density function

3. The number of servers

4. The queueing discipline

5. The amount of buffer space in the queues

For infinite-buffer, single-server systems using first come, first served

queueing discipline, the notation A/B/m is widely used. A is the inter-

arrival-time probability density, B, the service-time probability density and

m, the number of servers. The probability densities A and B are chosen from

the set

M - exponential probability density (K stands for Markov)

D - all customers have the same value (D is for deterministic)

G - general (i.e., arbitrary probability density)

The state of the art ranges from the M/M/1 syntem, about which everything is
known, to the G/G/m system, for which no exact analytic solution is yet known.

Consider the M/M/i queueing model of Figure 10. The M/M/1 model is often

assumed when analyzing computer systems. The assumption of an exponential

interarrival probability is completely reasonable for any system that has a

INFINITE BUFFER

PO ISSON ARRIVALS SINGLE SERVER

EXPONENTIAL SERVICE-TIME DISTRIBUTION

Figure 10. MIM/1 queue.

16

- - -

large number of independent customers. Under such conditions, the probability

of exactly n customers arriving during an interval of length t is given by the

Poisson Jaw:

n-t
P (t) n

n nI

where A is the mean arrival rate.

Although assuming an exponential interarrival probability density is 4

usually reasonable, assuming exponential service time is harder to defend on

general grounds. Nevertheless, N/N/I may be an adequate approximation for

situations with fewer long service times. .4

The state of an K/M/I queueing system is completely described, given the

number of customers currently in the system, including both queue and server.

Although it would seem aecessary to describe the status of the customer cur-

rently being served, the exponential density function has no memory. The

probability of the remaining service time requiring T seconds is independent

of how much service the customer has already received. The exponential func-

tion is the only density function with this memoryless property.

Queueing systems in which the only transitions are to adjacent states are

known as birth-death systems.

Consider an arbitrary queueing system in equilibrium and let N, W and A

be the average number of customers in the system, the average time customers
spend in the system and the average number of arrivals per unit time, respec-

tively. Little's theorem states that

4 N W* A,

regardless of the interarrival and service time distributions, the service

discipline and any dependencies within the system.

17

L e-. .p

• . .". L ", " . . ,. - - * " *. -" .,.-" .

A719

The following is one possible method for classifying analytic queueing

models. This classification system is based c;n a model space described by the

following six (reasonably independent) dimensions:

1. Model structure

2. Arrival process

3. Workload classification

4. Queueing disciplines

5. Service demand description

6. Server characteristics

The first three dimensions are global, pertaining to the entire model.

The remaining three describe in dividual service centers. In discussing the

dimensions individually, we indicate those classes that have proved to be most

* important in the development and the application of queueing r. work models.

Generally, in each dimension, the classes can be ordered according to com-

plexity, detail and cost of solution.

This classification scheme was taken from Reference 9,

The model structure describes the user of service centers and the manner

in which jobs flow among them. We distinguish the following:

1. Single server model (possibly with a feedback loop)

2. Cyclic queueing model (a constant number of customer3 cycle among the

service centers)

3. Central server model (customers move from a designated service center

to other centers, but after receiving service, they return to the designated

server)

4. General queueing network (arbitrary routing among service centers)

5. Hierarchical queueing network (a single service center at one level

of detail is represented by a network on a lower level of detail)

* .,. w..

".'" ' 18

0C. . . , . . i • - , : , ..2 ; :.. .' - . .. -"

The arrival process indicates the manner ia which new customers come into

existence. A model is one that is:

I. Closed (fixed number of customers in each routing chain)

2. Open (arrivals and departures in all routing chains)

3. Mixed (some routing chains open and some closed)

The arrival rates in open chains may be constant rate Poisson, load-dependent

Poisson or non-Poisson.

The workload classes characteristic indicates groupings of customers that

are statistically indistinguishable. Model possibilities are:

1. Single class

2. Mltiple class with no class changes

3. Multiple class with class changes

The queueing disciplines we distinguish are:

1. Station balance (including processor sharing, preemptive last-come-

first-served and no-.queueing)

2. Class-independent work-conserving (including first-come-first-served)

3. Strict priority (based on customer class)

4. General

The service demand description can be specified as either

1. A workload vector, in which the mean total service required by a

customer of i class at each device is stated or

2. A routing matrix indicating the pattern of stochastic movements of

customers and the distribution of service times for each class at each device.

The service time distribution may be assumed to have a particular form or to

have specified moments.

19

'o4

The server characteristic describes the reaction of the server to the

load. These include:

1. Load-independent servers

2. Load dependent servers

If the service rate is load dependent, it may depend on the number of custom-

ers of the same class at the service center, on the total number of customers

at the service center or on the total number of customers in a subsystem.

Much of the early work in networks was done by Kleinrock6 '7 '8 whose approach

is to model the communication network as a network of queues.

STOCHASTIC MODELS

Computer communication systems are characterized by unpredictable se-

quences of random demands on the available resources. The theory of sto-

chastic process thus also provides a large and effective set of analytical

tools particularly suited for the modeling of these probabilistic systems. If

we carefully analyze each queueing system for which there exists some solution

we undoubtedly would find an underlying Markov or semi-Markov process in a .

great percentage of them.

Renewal Theory

Renewal theory and the theory of regenerative processes, in general,

relate to systems in which there is an underlying process which probabilis-
tically restarts itself. The concept from renewal theory that corresponds to

alternating renewal processes proves most useful. An alternating renewal

process is one which describes a system that can be in one of two states, on

or off. Starting in the on state, the system alternates between these two

states. The periods of time it spends in each are random variables which

follow a common distribution for each of the two states. The key element in

such an analysis is to identify points in time at which the system regenerates

20

b ". .&." " " " ', " " b
r

" ' ' i , : °- ' - - --d•

-, j . ., , - -, . . . , - - --. - -'

Ai

itielf: the interval of time separating two consecutive regenerative points

is called a cycle; the ratio of average time the system spends in a given

state to the average cycle time is preisely the fraction of time that the
22

system spends in that state.22

Assuming an infinite population in conjunction with renewal theory argu-

ments has allowed the determination of channel capacity under various schemes.

This example (model) assumes that the traffic source consists of an infinite

number of users who collectively form an independent Poisson source with an

aggregate mean packet generation rate of S packets per packet transmission

time T. (We assume here that each packet is of constant length requiring T

seconds for transmission.) This is an approximation of a large but finite

population in which each user infrequently generates packets and each packet

can be successfully transmitted in a time interval much less than the average

time between successive packets generated by a given user. Each user in the

infinite population is assumed to have at most one packet requiring trans-

mission at any time (including any previously blocked packet). Under equilib-

rium conditions, S is also the channel throughput. Two additional assumptions

are also introduced: the average retransmission delay X is large compared to

T and the interarrival times of the point process defined by the start times

of all the packets plus retransmissions (and reschedulings) are independent

and exponentially distributed.

Markov Theory

A collection of random variables {S(t), t>-O) is said to be a 'Markov

process' if the probability distribution of the state at time t+y depends only

on the state at time t and not on the process history prior to t.

The behavior of a Markov process can thus be described as follows: at

time, t=O, the process starts in some state, say i. It remains there for an

interval of time, distributed exponentially with parameter Ai (average length

I/Ai). The process then enters state j with probability q(i,j), remains there

for an exponentially distributed interval with mean I/AI, enters state k with

probability q(j,k), etc. The successive states visited by the process form a

21

LI.

'Markov chain,' that is, the next state depends on the one immediately before

it, but not on all the previous ones and not on the number of moves made so

far. This Markov chain is said to be 'embedded' in the Markov process.

The L te j of the Markov process is said to be 'reachable' from state i

if there is i non-zero probability of finding the process in state j at time

t, gi,en that it started in state i. A subset E of process states is said to

be closed if no state outside E is reachable from a state in E. Thus, if the

process once enters a closed subset of states, it remains in that subset
A

forever afterwards. A set of states is said to be 'irreducible' if no pr :er

and non-empty subset of it is closed. As far as the long-run behavior of the

process is concerned, an irreducible set of states can be treated in isola-

tion, so we can assume that the set of all states, i.e., the Markov process,

is irreducible.

Every state of an irreducible Markov process is reachable from every

other state. A state j is said to be "transient" if the total average amount

of time spent in state j, given that S(O)=i, is finite. Otherwise, j is

"recurrent." Since the average time the process remains in state j on every
visit is finite, the average number of visits to state j is finite if j is ,

transient; it is infinite if j is recurrent.

Let us assume the Markov process is recurrent as well as irreducible.

Every state is guaranteed to be visited, no matter what the initial state is.

Having once visited a state, the process keeps returning to it ad infinitum.

If the average length of the intervals between consecutive returns to state j

is finite, then state j is said to be "recurrent non-null." If this average

is infinite, then state j is said to be "recurrent null."

The moments of successive visits to state j are "regeneration points" for

the Markov process.

In an irreducible Markov process, either all states are transient, or all

states are recurrent null, or all states are recurrent non-null. In the first

two cases, all limiting probabilities are equal to 0; steady-state does not

* 22

'

- -[---"-

- .- .-.

exist. In the last case, all limiting probabilities are non-zero; steady

state exists.

A demi-Markov process is a stochastic process which makes transitions

from state to state in accordance with a Markov chain but in which the amount

of time spent in each state before a transition occurs is random.

Markov Decision Models

In the previous Markovian models presented above, we assumed the system

parameters were all fixed, time invariant and state-independent. These models

are referred to as static. Clearly, it is often advantageous to design sys-

tems that dynamically adapt to time-varying input and to system state changes,

thus providing improved performance. If the system is Markovian in nature,

then the theory, known as Markov decision theory, provides a basis for anal-

ysis. Consider the process X(t) and its state space S labeled by the nonnega-

tive integers. Let A be a finite set of possible actions that correspond to

each action "a" chosen from the set A, a set of state transition probabilities

is specified and a cost is incurred. A policy f is a rule for choosing ac-

tions. Let P be the class of all policies. An important subclass is the

class of stationary policies. A stationary policy is defined to be one which

chooses an action at time t depending on the state of the process at time t.

It easily follows that if a stationary policy f is employed, the sequence of

states {X(t), t-O,1,2,...) forms a Markov chain. It is thus called a Markov

decision process and possesses stationary transition probabilities.
22

Regression Models

* - A regression model may be used as a fast statistical model of computer

system performance which relies on workload and performance data collected

from the system being evaluated. However, it has the disadvantage of not

being capable of modelling logical and structural relationships in the system.

A simulation model does not suffer from this limitation. However, a simu-

lation model which produced results similar to a regression model probably

23

.5--7 7-- -

would need to mudel the system in considerably more detail, and consequently

be more expensive to implement.

By combining simulation and regression techniques within a hybrid model,
the advantages of both techniques may be exploited. Simulation modelling

techniques are used to model in considerable detail those aspects of the

system of particular interest. Regression modelling techniques are used to

model the rest of the system in much less detail.

This information was taken from Reference 23.

GRAPH THEORY

For our purposes the computer network can be modeled by a graph G = (N,L)

where N is the set of nodes of G representing the network switching centers

(NSC) to which subscriber computers (SC) aad terminals are connected; L is the

set of arcs of G representing the communication links. If graph G contains n

nodes, it can be completely described by the n by n matrix A whose i, jth

element equals one, if there is a link, and equals zero, if there is no link.

A is known as the connection matrix. It is often convenient to assign each

link of a graph a real number called its weight. For example, the weight may

be the length of the link, its cost, its transmission capacity or other useful

quantity. The weight of a cycle or route is the sum of the weights of its
link.

If we assign to each node a real number, we have a set of node weights

which may represent cost, switching capacity and so forth.

In the design of networks for the connection of terminals to computers,

the following problem arises: given a fixed set of nodes such as the cities

in which the terminals and computer are located, find a tree on these nodes

that minimizes total link (communications line) costs, perhaps subject to some

constraints. Since the number of trees on n nodes is n**(n-2) it is impracti-

cal, except for small n, to generate all possible trees and find the cost of

each as well as test it for compliance with any constraints. There is a basic

procedure for finding a minimum spanning tree (MST), that is, one that has

24

iN _ - , * * . . - . , . , * -' .,- • *,z J a ~ ~ - - - - - - -

minimum weight but is not subject to any constraints. This algorithm is known

as the Prim algorithm Iminimum spanning tree). A minimum spanning tree is

shown in Figure 11. Next, procedures can be obtained for finding trees with

minimum-weight properties when there are constraints. A useful algorithm for

this is the Esau-Williams algorithm. An exact solution can be obtained using

the branch-and-bound method. Descriptions of these algorithms can be found in

Reference 24.

4

2

Figure 11. Minimum spannirg tree.

The major practical problem relating to routes in comunications networks

j.,f. -.o find one or more routes between a specified pair of nodes, or between

al oairs of nodes, subject to certain constraints. Algorithms to generate

routes are desirable because, somewhat as in the case of trees, the number r-f

routes. disregarding constraints, grows very rapidly with the number of nodes.

Therei,re, it is impractical to enumerate all routes and select those that are

acce ,ble. For any given set of nodes there are a great many ways to connect

these nodes. Examples of possible connections are given in Figure 12.

Floyd's algorithm addresses most directly two questions:

1. How long is the shortest route between node i and node j, for all

pairs i, j with i not equal to j?

2. What links make up the shortest route between i and j? The Dijkstra

algorithm addresses the problem of finding the lengths of the shortest routes

from a specified node to all other nodes. It is often desirable to be able to

generate routes longer than the shortest route; for example, as alternate

25

|: ', " "" "d " ,: t' = " • o. • . " .t.~ . fl... . - - - - - -

i ./

is) Star (b) Loop

(c) Tree
(d) Complete

(e) Intersecting loops

IfM Irregular

Figure 12. Possible ways to connect nodes.

routes when the shortest route is unavailable for some reason. in many prac-

tical problems, rather than identify the kth shortest routes, it is desirable

to find all routes between nodes i and j whose length does not exceed M. An

algorithm known as the route-tracing algorithm does this. These procedures

can be found in Reference 25. :

Designers often need to be able to compute the information carrying

capacity of a network. The cut is a concept from graph theory useful for

modeling the carrying capacity of a network. An X-Y cut is a set of arcs

whose removal disconnects node X from node Y. The number cZ arcs in a cut may

vary from one to all the arcs in the graph. A minimal cut is one in which

replacement of any of its members reconnects the graph. In a weighted graph,

each cut has a capacity. The capacity of a cut is the sum of the weights of

the arcs in the cut.

26

.-'

A variety of measures of network reliability, that is, of a network's

ability to continue to provide communications routes between some nodes when

other nodes or links fail, has been proposed. These measures fall into two

classes: Deterministic measures depend only on the structure of the network,

that is, on the numbers of nodes and links and the way they are connected.

Probabilistic measures of availability, on the other hand, depend not only on

the structure, but also on the probabilities of failure of nodes and links.

One measure of network reliability is the cohesion of G. This is the minimum

number of links that must be removed from G to break all routes between at

least one pair of nodes. Another measure of reliability is the connectivity.

The connectivity of a graph G is the minimum over all node pairs of the mini-

mum number of nodes of G that must be removed from G to break all routes

between i and J. The basic algorithm for finding the cohesion is an appli-

cation of the max-flow min-cut theorem. To determine the connectivity, the

problem can be converted into a cohesion problem and then solved.

The selection of the appropriate type of topological structure for a

network depends on the application. Two different factors mainly influence

this choice: reliability, which would favor highly connected topologies and

total cost which favors tree-like topologies.

Techniques for reliability analysis based on graph theory are given in

Reference 10.

Net Models

Another approach that can be used to model and analyze communications

networks is that of net models. These net models include such models as Petri

nets (developed at MIT), evaluation nets, and the graph model of behavior, GMB

(developed at UCLA).

To accomplish network modeling concepts, a suitable description method

- needs to be found which offers capabilities of representing:

* 9 Parallel processes and their synchronization

7* The logic structure of a system part

27

Lo

* Transient entities and their information content

0 Propagetion delay or execution time.

Additionally, a graphical representation of the model structure for better

comprehension and a suitability of the model description to easy implementa-

tion for simulation are required.

On approach that satisfies these requirements is evaluation nets. Evalu-

ation nets allow the description of parallel processes, control and data flow

and processing time. They offer a graphical representation and a complement-

ary formal description suitable for simulation input. They allow hierarchical

levels of description in that a given portion of a system may be expanded or

compressed in detail compared to the rest of the model.

Transitions, locations and tokens are the elements of an 3-net. Tokens

may be regarded as information carriers. A token may represent a job, mes-

sage, command or status information moving through the system. Tokens reside

in locations, one at a time, and control their motion mutually at transitions.

Tr&nsitions may reprosent time-less actions (events) or time-consuming actions

(activities). There are five basic transition types shown in Figure 13. They

are T-transitions, J-transitions (join), F-transitions (fork), X-transitions

(output selection) and Y-transitions (input selections). A transition "fires"

if the activities represented by that transition are executed. That is, after

elapse of the transition time, tokens are moved from their input locations to

the output locations and their attributes, representing the information car-

ried, are possibly changed according to the transition procedure. Every

transition is described by its schema, a transition procedure which affects

* the attributes, a time procedure if the transition time is not zero and, in

the case of the X- and Y-transition, a resolution procedure which allows the

control of token advance according to the status of the net or the actual

values of token attributes. This information was taken from Reference 26.

Petri nets are another approach to network modeling. Petri nets are

graphs representing interacting processes contending for resources and consist

of transitions and places, interconnected by edges. Transitions model proces-

sing while places model the state of the system. The dynamics of Petri nets

28

T-TRANSITION
X-TRANSITION c.

OUTPUT
SELECTION D

J-TRANSITION
JOIN

Y-TRANSITION

I.C~ INPUT
F-TRANSITION C SELECTION

D

Figure 13. Basic transition types of E-nets.

are described by tokens flowing from place to place across transitions. The

presence of tokens on places causes transitions to fire, thereby causing some

tokens to be removed from the input places of the transitions and tokens to be

placed in the output place. of the transitions. The primary issue in Petri

net research has been Liveness and Safeness. These two properties deal with

deadlocks, traps and other control-flow anomalies. Little attention has been

paid to timing issues. The Petri net simulator is APL based and provides

little simulation support aside from APL's debugging aids. An example of a

Petri net is given in Figure 14.

Graph Model of Behavior (GMB) was developed at UCLA at the same time as Petri

nets. The GMB is particularly well-suited for use in a structured, multi-

level design environment because of the attention given to its use for both

analysis and simulation. It is used as the basis for the SARA design package.

A more complete description of the GMB can be found in References 27, 28, 29.

Another approach to network simulation based on graph theory is described

in Reference 30. Here the execution of the simulation is not controlled by a

program on a general-purpose computer. Instead, each node of the graphical

description is simulated by an electronic circuit and the nodes are physically

connected by means of electric wires. Conditions expressing the routing of

entities through the network are also expressed physically by Boolean values

issued from electronic circuits or from a computer and carried by electric

29

S . . .- . -.. . - - ,

T3

Figure 14. Petri net.

wires. The operation of this type of simulator is very similar to the opera-

tion of an analog simulator except the circuits c, binary information and

-, enable us to perform discrete-event simulation.

"" FINITE STATE DESCRIPTIONS

Discrete-event simulation represents the state of the system of interest

by elements of a finite-state machine (e.g., a digital computer) and observes

(or measures) the state changes specified by a number of fixed rules (e.g., a

computer program). The state changes usually are referenced with respect to

time represented either by some fraction of real (or execution) time or by one

particular variable of the finite-state machine. The time used to reference

the occurrence time of state changes (or events) is called "simulation time."

Finite state models may also be used for specification and validation of

communication protocols. This description method basically subdivides the

system into a number of communicating components, so that each component is a

finite state machine. Figure 15 gives an example of using a finite state

model to model a simple transmission medium.

30

- .------

Figure IS, Finite state model of a simple transmission medium.

I APPROXZIMATION TECHNIQUES

Many important practical cases of large-scale
computer systems are too

complex to be represented exactly by a mathematical model. Even when a pre-

cise mathematical model can be constructed,
the analyt is faced with a prob-

le of dimension. Models with a nuber of states proportional to 1,000,000

are easy to obtain, but program packages capable of
solvng Markov chains of

th is dimension are not yet available. Often the mathematical models which

arise from cmputer systems have properties which make them particularly

* dffcult to handle numerically. For instance, the time constants related to

NSIT

* various parts of the system will vary widely leading to "stiff" systems of

equations. Such properties also mae simulation modeling particularly df-

ficult. If a system is composed of parts with very small end very lage time

constants, it
will be necessary

to simulate it
at the time scale which

co-

c.. responds to the rapidly varying portos to preserve the desired accuracy. ob-

SHowever, the total smulation time will have to be large compared to the

Sslowly varying parts for the simulation to reach steady-state. Furthermore,

ithe probabilistic or
statistical tools available at present do not permit us

f to estimate accurately the confidence intervals of simulation results, except

vafor the simplest models which have a regenerative structure or other simpli-

equaying prope rties. ps.

ficW h ile th e analysis of networks of queues seems to have m at red i a g the

olast few years, much remains to be done for the models to reflect a more

Saccurate picture of a data network. For example, computer queueing structures

have highly irregular connections as compared to
those of a data network.

' '.
31

f or' t h s i p l s m o e l w h c h a v e al ~ r e e e r t v s t u c u r o r' o t h er',
: 1

s i m p li.
"

. - - . -, _ ,.- --- - --- .
.

- - -. • .- , : .' . .. , :

. Protocols for flow control play an important part in data networks; there is

no general method to model such protocols. Further, there is much more coup-

ling and correlation between queues in a communication network since short p
packets remain short packets as they traverse the network, etc. Some re-

searchers reported that trying to fit a queueing model to a real problem is

too restrictive and, in fact, may be misleading. Nevertheless, analysis

should bring insight to permit effective use of queueing models for the analy-
31 "

sis of data networks.31

All these considerations make it particularly desirable to have computa-

tionally tractable and relatively accurate approximate mathematical models for

computer systems.

Diffusion Equations j
Une approach to approximating solutions to network problems is to use

- diffusion approximations which are computationally tractable and relatively

accurate approximate mathematical models for computer systems. If they are

used carefully, under relatively heavy load conditions and when traffic and

service times do not have excessively high coefficients of variation, their

accuracy is comparable to that of simulation models. The computational effort

involved in solving them is negligible by comparison. Usually it will involve

solving a system of linear equations whose size is the product of the numberI? of stations and the number of customer classes and computing moments from a

continuous or discrete distribution function.

The open problems in this area are of both a mathematical and a practical

nature. The convergence of the queueing models to the diffusion approxima-

tions has been established only for the simplest and the least interesting

cases. This is hardly surprising since the mathematical tools for this are

still rudimentary. From a more practical point of view we need to further our

understanding of "good" diffusion models for various cases of interest, such

as queue-dependent arrival or service times, which are not yet properly han-

dled. Also, further practical and theoretical understanding of the properties
of the flow of customers in a queueing network will improve the accuracy of

diffusion approximations.

32

0•.

A promising method for the approximation of queueing systems with general

service time distributions is to use a diffusion process to approximate the

number of the queue. The method would replace the discrete number of jobs in

the queue by a continuous variable, which, according to the central limit

theorem, will be approximately normally distributed under heavy traffic con-

ditions. Consider, for instance, the G/G/i queue; the basic assumption to the

diffusion approximation for this model is that as soon as a busy period be-

gins, the stochastic process representing the number in the queue is adequate-

ly approximated by the predictions of the central limit theorem.

Several questions arise in the choice of the approximate process model:

1. The choice of the appropriate boundary conditions

2. The choice of the diffusion parameters b, a which characterize the

drift and instantaneous variance of the process

3. The selection of interval size which may be used to work back to a

discrete probability distribution from the continuous density of the diffusion

process

This information comes from References 32, 33.

The principal idea is to convert the basically discrete (and difficult)

queueing problem into a continuous (and simpler) system by a limiting opera-

tion. The resulting partial differential equations resemble diffusion equa-

tions and the entire machinery of parabolic equations can be b-ought to bear

on the model. However, with this method, boundary conditions must be handled

in a reasonable way. Improved schemes for handling boundary conditions result

in significant improvements in the approximation. Generally speaking, the

greater the fraction of time that the system spends on the "boundary," the

less accurate the approximation. For instance, boundary conditions would be

R - very important in a closed network where each customer has distinct behavior

and is thought of as belonging to a different class. Similar problems arise

with priority disciplines. Boundary conditions would be less important in a

heavily loaded single server queue with a potentially infinite number of

customers since the system would spend relatively little time at the boundary

(that is, the ideal queue). This is frequently referred to as the "fluid

33

L"

)

.,1

approximation." To consiler second moments it is necessary to postulate

Gauss-Markov process. As a rule of thumb based on experience, if both service
time and interarrival time distributions are not highly skewed and if the

system is heavily loaded, then the diffusion approximation tends to be accu-

rate. Unfortunately, however, many distributions occurring in data or com-

puter communications tend to be skewed. The diffusion approximation is ana-

logous to the central limit theorem in that we must be careful in applying it

where the limiting operations are not justified. A very important open prob-

lem in the diffusion approximation method is to develop a technique to esti-

mate the accuracy of the result obtained by this method.
31

Decomposition Method

In this section we discuss approximations which retain the discrete

nature of the model. The set of numerical solution procedures presented has

been designed for the approximate analysis of closed networks of queues. All

the procedures call upon the concept of an isolated subsystem composed of one

or more queues in the network. This subsystem is examined in detail under the

effect of the rest of the system viewed as an aggregate. The stationary solu-

tion will then be framed either in terms of marginal distributions for each

subsystem or as a product of the marginal distributions when the stationary

distribution for global network state is desired. An example of this is given

in Figure 16.

L ~ ~~~~~~AGGREGATE--------------

SUBSYSTEM

Figure 16. Simple aggregate/subsystem decomposition of a queueing network.

34

L

, .,

The basic idea is to isolate those events happening at a fast rate from

the slower events. These fast event activities are treated as a subsystem and

are analyzed individually so as to focus on the major events. This method is

able to identify important parameters and to provide further insight into

network performances. However, i is not always clear how a complex system

should be optimally decomposed and the error caused by the decomposition

cannot be readily computed.31

.. A technique which is closely related to decomposition was inspired by

electric network equivalents. In electric networks, a complex portion of the

network can be simplified by replacing it with an equivalent current source

and parallel impedance, or a voltage source and series impedance. These

equivalent circuits are exact equivalences for electric systems and suggest a

heuristic equivalence for queueing networks.

This information can be found in Reference 32.

Iterative Approximations

This is a heuristic attempt to analyze complex closed queueing networks.

Ideally the behavior of each queue in the network can be determined by anal-

yzing that queue and its interface with the rest of the network. If the

interfaces can be described in simple terms, then the problem of analyzing a

system of a queue and its interface is tractable, whereas the analysis of the

entire network is not. In practice, in most cases the interface is actually

very complex. This attempt is to describe complex interfaces by means of

simple models. The method is based upon invariants common to all queueing

models. For instance, at equilibrium, the rate at which customers depart from

a queue must equal the rate at which they enter the queue. Each queue coupled

with its interface is analyzed to obtain queue statistics, including through-

put. If the queue statistics satisfy the invariants, the algorithm stops.

Otherwise the interface for each queue is adjusted in a heuristic manner and a

new iteration is begun.

*t Unfortunately, there is at least one situation in which the method con-

verges extremely slowly or does not appear to converge at all. This is the

35

* - .. .

A

case of a network with a queue using a preemptive discipline where high pri-

ority customers are several times slower than low priority customers. Though

this case is unlikely to occur in modeling practice, it highlights the problem p

with this method: this attempt cannot be guaranteed to converge at a point

near the true value except in the uninteresting case where the network satis-

fies local balance (in which case the network satisfies product form and queue

statistics can be readily computed). In most cases, empirical studies show

that the heuri3tic procedure works well.

The algorithm is based on analogy between queueing networks and electri-

cal circuits with throughput being analogous to current. An analogy to Nor-

ton's theorem on electrical circuits is used to simplify the given network.

Figure 17 shows Norton's equivalent principle applied to a queueing network.

Similar ideas have been used in non-iterative methods.

Al A A2

SUBNET1 SUBNET 2
[' -PI(1) P2(K-K1)

Figure 17. Norton's equivalent applied to a quetteing network

This information was taken from Reference 31.

Sparse Matrix

This method permits the analytic solution of fairly large, discrete

systems (up to 10,000 states) by constructing a state transition matrix and

utilizing a data structure which capitalized on the regularity and sparsity of

typical systems. The rate of convergence to a solution for queue lengths,

stationary state probabilities, etc., can be made negative exponential in time

rather than reciprocal in time. A recursive queue analyzer has been con-

structed which will solve a 10,000 state system in about. 10 minutes of CPU

time. The technique is attractive because it gives virtually exact answers

including state probabilities (not just averages). However, there may be

problems with ill-conditioned matrices and 10,000 states may not be large

enough since the number of states grows exponentially with the number of

36

i

queues in a network of queues. In particular, data networks have extremely
31

large numbers of states.

Bounds

Instead of attempting to find approximate or exact solutions, frequently

it is sufficient and often more desirable to find bounds on solutions. Var-

ious workers have found exponentially tight bounds on M/G/1 and G/G/1 queues.

A relatively simple Chernoff-type bound in analytical form can provide great

insight to design. Although bounding techniques have been developed for

simple queues, virtually nothing has been done for networks that would be

required to model data networks.

HYBRID SCHEMES

The complexity of all but the simplest communication networks makes the

development and analysis of the networks very difficult. Two extremes of

models are available - analytical models and simulation models. The anailyti-

cal models are limited in the amount of detail they may represent and re-

stricted by their computational solution algorithms. Their advantages are

that they can be designed and implemented very quickly. If desired, very

complex systems can be characterized by a small number of parameters if cer-

tain simplifying assumptions are made. Simulation models, on the other hand,

can model very detailed networks but at the cost of more time to model and

implement and wore computation time. Simulation models should be used when a

model violates the basic assumptions of the analytical model or when models

need to be extremely accurate, Often analytic and simulation techniques can

be combined in a hybrid approach to network modeling. In the hybrid approach

we can combine the advantages of analytical techniques with simulation while

minimizing the disadvantages of both techniques.

One such hybrid model has been proposed for the analysis and synthesis of

the EHF network. This model is described in Reference 34. Rubin's emphasis

*is on using analytical techniques whenever possible in conjunction with simu-

lation techniques when they are required.

37

*i 1- . . . : . . , , _ -. 4

Another hybrid model is discussed in Reference 23. By combining simula-

tion and regression techniques within a hybrid model, the advantages of both

techniques may be exploited. Simulation modeling techniques are used to model

those aspects of a particular system in considerable detail. Regression

modeling techniques are used to model the rest of the system in much less

detail.

This information was taken from Reference 23.

MODULAR SCHEMES

A modular or structural simulation model is a method employing the fol-

lowing characteristics:

I. Divides subnetwork activities into isolated, nonoverlapping sets of

functions, each with its own rules, which we shall call protocol areas.

2. Provides subnetwork structure initially consisting of the names of

the computer subprograms, each of which will define a protocol area; these

subprogr:ms (supplied by user or standard library) are the building blocks

available for constructing models of specific networks. Later, the executive

program will retrieve these subprograms by name and use them in constructing

the model.

3. Sets parameters of the network to provide those data values con-

sistent with and needed by the model.

This type of model gives the user two distinct levels of control:

1. The ability to modify any of the model's parameters to do simple

parametric experimentation.

2. The ability to replace subprogram currently implementing the rules

controlling a protocol area with another subprogram.

Additional information describing the VANS (Value Added Network Simula-

tor) is given in the following two tables. Table 4 gives the input parameters

38

,.

Parameter Type Meaning

N Scalar Number of nodes

MAXHOST Scalar Maximum number of hosts at each node

STARTTIME Scalar Time to begin collecting statistics

SIMTIME Scalar Total simulation time

PRIORITY Scalar Number of static priority levels

OVERHEAD Scalar Message overhead

WAIT Scalar Reassembly time out period

PACKETSIZE Scalar Size of a message packet

TURN Scalar Half duplex turnaround time

MAXLENGTH Scalar Upper bound on message length

TI Scalar Time increment for routing control

CMP Scalar Control message priority

SEED Scalar Random number speed

REPORT-LEVEL Scalar Quantity of output desired

HOST N x MAXHOST x 7 Host descriptors for each host

CI N x 7 The 7 CI descriptors for each CI

LINE-SPEED N x N Line speed/topology table

LINE-TYPE N x N Line type table

LINE-FAILURE N x N Line failure table

LINE-LENGTH N x ' Line length table

ROUTE-TABLE x C N Routing table

COST-TABLE N x N Cost table

DESTINATION N x Used to determine destination of newly
PROBABILITY-TABLE generated messages

Table 4. Parametric input to the VANS system.

39

. . - - - - --.

to the VANS system including the type of variable and what each parameter

represents. Table 5 tabulates another set of parameters controlled by VANS.

Here, the parameters are indexed for easy reference in the simulation. Their

-. functions are described and their role is defined. This information was

obtained from References 12, 13, 14.

The hierarchical approach appears in the following procedure. A gross or

macro model is used to describe the total system; major hardware subsystems

are represented as single (rather than multiple's resources in the macro model.

Typically, a major subsystem may b' represented by a queue and a single server

in a queueing network macro model. The parameters of the single resource u
representation of a major subsystem are determined by analysis of a micro

model for that subsystem. For instance, if a subsystem is represented by a

single server in a queueing network then service rates would be determined j
from a micro model. A micro model is a detailed model of a subsystem. (How-

ever, portions of the micro model could be expanded into even finer sub-

models.)

There are several benefits of hierarchical and structured modeling and

obviously they are similar to the benefits of structured programming and

design: -j
1. The models being analyzed can be kept to tractable size

2. The model structure can be tailored to the level of detail available

for parameters and validating

3. The component and subsystem models can be validated separately from

the total model

4. The component subsystem can be conveniently r:presented at several

levels of detail as is appropriate

5. System models with a very high (implicit) degree of complexity can

still be analytically (though approximately) solved. This renders extensive -

parameter analysis of models economically and computationally possible.

This information was obtained from Reference 15.

40

Index Name Node process Function

1 Destination HOST Determines message destinations

2 Length HOST Determines message lengths

3 Priority I HOST Determines static priority levels

4 HOST-FLOW-control HOST Can turn on or off the means of
communication between HOST and CI

5 Intermessage-time HOST Determines time of next message
generation

6 Enqueue HOST Enters messages into HOST queue

7 Dequeue HOST Removes messages from HOST queue

8 Travel-time HOST Determines delay along HOST/CI
link

9 CI-Queue-builder BUFFER MANAGER Adds newiy arrived messages to the
unprocessed message queue

10 Garbage-collector BUFFER MANAGER Performs housekeeping functions on

all queues in the CI buffer

11 Preallocated BUFFER MANAGER Implements the operations involved
in preallocation of CI buffer
storage

12 CI-Flow-control BUFFER MANAGER Can turn on or off the means of
communications between HOST and CI

13 CI-Queue-selector CI Selects message from the unpro-
cessed message queue for pro-
ce.ssing by a CI

14 Priority-changer CI May temporarily alter the static
priority of a message as it pro-
gresses through the system

15 Disassemble CI Converts a logical message (that
seen by user) to physical message
(message to be transmitted to next
node)

16 Error-detector CI Determines whether newly arrived
physical message is correct

Table 5. Parametric input to the VANS system.

41
. - - - - - - -

- --.- . ,- -. U "-" .. ° " - .- - ".- - . .' ' ,

Index Name Node process Function

17 Error-corrector CI Implements the recovery protocols
for arriving messages cintaining -

errors
4

18 Create-control- CI Creates all subnetwork control
message messages required by protocol

'2

i 19 Procass-control- CI Routes all control messages to the
message proper protocol module

20 Store-and-forward CI Manages the store/forward queue

21 Router CI Handles the routing of messages
through the subnetwork and modi-
fying the routing and cost tables

22 Shortest-path CI Determines the all-pairs shortest
path through the cost table

23 Reassemble CI Converts a physical message back
into a logical message

24 End-to-end CI Implements any necessary end-to-
end CI protocols

25 LI-Queue-builder LI Manages the line interface queues

26 LI-Queue-selector LI Determines the order in which
messages will be given to the line

interface computer

27 Transmit LI Determines the transmission time
of a message across a physical
link

28 Dial-up LI Models the delay involved in
creating a circuit-switched con-
nection protocol

29 Enable-to-send LI Determines if we are able to
transmit a message across a
physical link

30 Half-duplex LI Allocates a half duplex line be-
arbitrator tween two competing nodes

31 Backing-delay STORE Models the seek, latency and
transfer delays associated with
the backing store

Table 5. Parametric Input to the VANS system. (Continued)

42

!,- . - - ., . *•. .. •

.

Index Name Node process Function

32 CI-fail GREMLIN Determines probability of CI
failure

33 Line-fail GRDLIN Determines probability of the
total. failure of a physical link

34 Error-handler All General error handler for all node
processes

35 Scheduler All General event scheduler for all
node processes

Table 5. Parametric Input to the VANS system. (Continued)

DISCRETE-EVENT SIMULATION (USING SIMULATION LANGUAGE)

Special purpose simulation languages can be used to simulate communica-

tions networks. General simulation languages differ from general programming

language in that they have some extra features needed in simulation, such as

" *queue handling, timing functions, transaction processing, priority functions,

etc. With simulation language it is possible to construct any kini of model

as accurately as desired. 6 Simulation models can model very detailed net-

works but they take more time to model and implement and require more computa-

tional time. In general, this approach to network design is most appropriate

when the problem is too difficult for closed form analysis but is an isolated

and well-described problem.

Many papers dealing with computer communication networks tend to focus on

one problem area. They are characterized by a fixed choice of higher-level

rules that determine network behavior. The user's only control ovt.r I:hese

models is choosing the values of certain network parameters, such as the

number of nodes, line speeds, message frequencies, message lengths and channel

error rates. In these models higher level subnetwork tasks (such as error

detection and correction, routing, acknowledgement procedures or flow control

protocols) are usually not part of the user/model interface and are not under

the user's control. They can be changed only by major modification to the

program.

43

- -- - .- - . -

These models give good results for specific situations but have two

severe limitations. They cannot be used to analyze networks with different

architectures and they cannot be used for much of current research concerned

with more than simple parametric investigation.

To meet the needs of a computer network analyst, the modeling language

has to be a high level language suitable for describing processes typical for

data communications networks. Typical characteristics of data networks are

concurrent software processes inside a node computer and completely in-

dependent processes running on different machines spread around a large

geographical area. The language has to be easy to read (i.e., English-like)

, and it must permit independent software modules to be put together to form a

complete software system.

Three types of languages have been used for simulation: general-purpose

programming, simulation and descriptive/design languages. Each type of lang-

uage has advantages and disadvantages which should be considered by users in

selecting language best suited for their applications. A tabulation of the

various programming languages is given in Table 6.

Language Language Purpose Systems Modeled Language Style

FORTRAN, PL/I General purpose Continuous and/or Conventional -

ALGOL, APL discrete systems

CSMP III Simulation Continuous systems Conventional
DYNAMO
MIDAS

GASP IV Simulation Continuous and/or Conventional
discrete systems

SIMSCRIPT 11.5 Simulation Discrete systems Conventional
SOL, SIMULA

GPSS Simulation Discrete systems Graph based

ISPS, MPDL Description/ Discrete systems Conventional
AHPL, DCDL design

DFSS Description/ Discrete systems Graph based
Petri nets design
GMB

Table 6. Programming languages for network simulation.

44

2'. %7- - • - .

The arguments in favor of general purpose programming languages are:

1. A larger group of people reads and writes programs written in or

using general purpose programming languages. Therefore, the pool of pro-

grammers is larger and the programs are more acceptable.

2. A larger group of computer systems supports general purpose pro-

granuing languages. Therefore, simulation programs written in them are more

portable.

3. There is greater effort to decrease cost of executing general purpose

programming languages. Therefore, they are usually cheaper to use. j

The d13advantages are:

1. Each model must be coded entirely from scratch, including simulation

functions which are common to many models. Therefore, only those modelers who

are familiar with the general purpose programming language program will readi-

ly read and inderstand the models.

2. General purpose programming languages contain few simulation oriented

functions and provide little simulation oriented debugging aid. Therefore,

those who design and carry out simulation experiments are in a weaker posi-

tion.

Descriptive/design languages are languages developed to describe the

behavior of some existing systems or to design new systems. These languages

generally attempt to accurately reflect the structure and behavior of the

system being described or designed. Many descriptive/design langua-es have as

primary goals both analysis and simulation. Some of these languages also deal

with the difficulty of bridging the gap between modeling and imrlementation.

Modeling artifacts often found in simulation languages are minimized in des-

criptive/design languages. Interspersing measurement and report generation

constructs within the model, therefore, is minimized, often leading to a

weakness in these areas.

I..

45

r.7

.- _-- 77 7. 71

Simulation languages are languages developed expressly to conduct simu-

lation experiments. As would be expected, these languages are characterized

by their strong support of basic simulation functions, in particular, instru-

mentation and report generations.

Most simulation languages are characterized in the literat-ire by the

types of physical systems which they can model and simulate. in particular,

it is important to note whether the physical system variables (also called

state of dependent variables) change smoothly or in discrete steps. Continu-

ous systems are those whose variables change smoothly. Such systems are most

often described by partial differential equations or finite difference equa-

tions. Discrete systems differ from continuous systems in that system vari-

ables change in discrete steps according to some stated algorithm.

FORTRAN, PL/I, ALGOL and APL have been used extensively to construct

simulation models. FORTRAN provides efficiency, PL/I provides powerful con-

structs, data structures and block structure (as does ALGOL), while APL pro-

vides powerful data operators. APL offers the added advantage of an inter-

active environment with useful debugging facilities. The general subroutine

mechanism provided in these languages (especially PL/I and ALGOL) can be used

to achieve some degree of abstraction. PL/I data structures are especially

useful for data abstraction.

CSMP III, DYNAMO and MIDAS allow users to solve problems by programming

them directly from a mathematical model. The languages are mostly nonpro-

cedural and allow the user to describe the system as a set of partial dif-

ferential equations. A variety of integration methods are available to the

user.

GASP IV is a FORTRAN-based simulation package providing basic simulation

functions such as: event control, state variable updating, information stor-

age and retrieval, initialization, data collection, program monitoring and

event reporting, statistical computation, report generation and random deviate

generation. In addition, GASP provides some functions which must be replaced

by the user. These "stubs" are responsible for: subprogram initialization,

description of equations and initial conditions for "state" variables, event

46

code definition, definition of event processing procedures and data collecting

and reporting. GASP is somewhat limited in its modeling of queues by

FORTRAN's lack of list-manipulating routines and by the lack of data

structures.

GPSS is the most widely used simulation language for discrete system

simulation. A GPSS mdel consists of a set of interconnected blocks modeling

transformations. Lines connecting blocks describe possible flow paths. The

dynamic portion of a model consists of transactions which flow through and are

transformed by blocks. The flow of transactions can be affected by parameters

of transactions and by conditioned wait statements. Standard Numerical At-

tributes are information items made available to the GPSS user during simu-

lation, e.g., the current value of the simulation clock, queue lengths, etc.

In GPSS, resources are modeled by facilities and storages. Facilities

are resources which can be used by no more than one transaction at a time,

while storages may be occupied by more than one transaction. GPSS allows some

synchronization to be modeled through the use of constructs which create and

merge copies of transactions. GPSS is efficient and provides many built-in

statistical measurements in addition to some user controlled monitoring and

measuring facilities. Report generation is strictly automatic. GPSS has a

large number of different blocks, making it difficult for inexperienced users.

The textual format of the language is rigid and rather obscure. On the other

hand, GPSS doesn't require previous knowledge of computer languages and the

graphic form of the language is more natural to inexperienced computer users

than conventional computer languages. The approach used in GPSS to simulate

the changes in system state is process interaction. Its underlying structure

attempts to move customers to complete their activities. Transactions (or

customer records) are moved from the future event chain to the current event

chain at the appropriate event times. The current event chain is then scanned

and the active transactions are moved as far as possible towards the comple-

tion of their activities.

SIMSCRIPT is a classic discrete event simulation language. The under-

lying structure of SIMSCRIPT attempts to invoke the event routines at the

47

"'41

appropriate simulated time instance. A program in SIMSCRIPT, therefore, con-

tains a group of subroutines which characterizes the state changes for the

different types of events and a timing routine which pro-esses events by
calling these subroutines. Models are characterized by their events. Events

are divided into exogenous (triggered from the environment, i.e., data cards)

and endogenous events (triggered by other events within the modeled system).

Timing mechanisms are very general and simple; each event must predict the

occurrence time of events it triggers. System variables are modeled by enti-

ties which are either static (permanent) or dynamic (temporary). SIMSCRIPT's

strength lies in:

* An English-like syntax which is easy to use and which is capable of
concisely modeling complex interrelationships

* Powerful queueing mechanisms including user controlled queueing
strategies

* Strong concepts of events, entities and sets

* Powerful built-in (but under control? measurement mechanisms

* Powerful English-like report generation constructs

SIMSCRIPT is best suited for system level performance evaluation and

tuning. It is weak in its modeling of low level timing. The introduction of

PROCESS and RESOURCE statements suggested by Russell increases SIMSCRIPT's

suitability for modeling computer systems.

SOL was developed originally by Knuth to include the essentials of GPSS

but with a symbolic language syntax (based on ALGOL). As in GPSS, the dynam-

ics of a model are described by transactions flowing through processes. Fa-

cilities and stores model resources. The TABULATE construct is used to gather

statistics. Many powerful built-in statistical analysis operations are per-

formed. Report generation is partially automatic and partially under user

control.

SIMULA was first proposed by Dahl and is an ALGOL-60 based simulation

language. Its distinguishing feature is the powerful "class" concept. The
ability to concatenate "classes" provides SIMULA with a data abstraction

48

mechanism which is conspicuously absent from other simulation languages. In

addition, SIMULA contains new operators to handle ca-routing. The simulation

support of SIMULA consists of three classes:

1. SIMSET, which provides set (and queue) manipulation routines

2. SIMULATION, which supports the concepts of processes, scheduling,

synchronization and time management

3. BASIC:), which provides input/output facilities which differ from the

ALGOL-60 10 facilities

In addition, SIMULA provides some synchronization and interruption con-

structs which make it particularly we.ll suited for modeling resource sharing

and priorities. It also provides routines for variate generation. The prin-

cipal measurement capability is to accumulate (integrate over time). The

principal report generation facility is histogram.

The class concept in SIMULA allows the programer to define objects where

both data and operations are included. The class objects can be created

dynamically and deleted during the simulation period. (For example, an infor-

mation data packet is only alive as long as the packet is transported through

the network.)

A class declaration can be prefixed with other user or system defined

class names. If so, the prefixed class also owns the data and operations

defined in the class used as prefix. Such predefined system class is SIMU-

LATION which, when used as prefix, allows use of several convenient tools for

describing concurrent processes. Parallel processes in SIMULA can be des-

cribed as process classes. In addition to the time scheduling primitives,

SIMULA also contains tools for synchronizing processes, like queues and pro-
17

cedures for treatment of queue elements.

SOL and SIMULA are used strictly in a batch environment. SIMSCRIPT is

usable both interactively and in a batch environment and provides some debug-

ging aids through the use of "monitored variables." SOL and SIMULA differ

49

II'.-

!4

from other languages in allowing recursion. The difficulties introduced by

such dynamics are discussed in a later section. None of the languages deal

with the difficult issue cf multilevel simulation.

ISP, AHPL, DCDL and MPDL are classified as discrete system, descriptive/

design languages.

ISP was designed to describe instruction sets of processors. Its suit-

ability for describing systems at the register-transfer level is widely

recognized. Its initial use was in describing systems for the purpose of

analysis and automatic generation of assemblers, code generators, test so-

quences and other applications. More recentlv t-e emphasis of its use has

shifted to hardware systems design. Recent work has included symbolic execu-

tion of ISP descriptions. The strength of the ISP notation is in its useful

constructs for: bit manipulation, register overlaying, memory accessing,

opcode decoding, logical and arithmetic operations.

Parallelism can be modeled at the statement level (using ';'). Delays

can be used to model timing. The recent emphasis on design has resulted in

the addition of higher level control flow constructs relating to interprocess

communication. ISP is limited in its power of abstraction by i.ts lack of data

structures and the absence of structured mechanisms for interprocess conmuni-

cation. The wide range oi applicability of ISP has resulted in some cases in

the weakening of the "semantics" of the ISP constructs. The formal semantics

have often been left up to the application (analysis and simulation) programs.
Recent work has attempted to deal with this weakness through the use of de-
notational semantics. ISP is considered weak in its support of simulation.

AHPL is used to describe and design hardware. AHPL is an APL-based

register transfer level language. APL's powerful data operators are not fully

utilized ix AHPL to achieve -he goel of taking a design to implementation.

The use of powerful APL operators results in creating large amounts of hard-

ware without the designer's knowledge and, therefore, is discouraged. Paral-

lelism is modeled using Diverge and Converge operators. Synchronization among

modules is modeled using Wait and Dalay operators. Data flow is realized

through assignments to registers located in different modules. MLPL atteapts

50

to deal with two levels of simulation by allowing some modules to be described

as Logic subroutines. AHPL has bee-i used for simulation but is weak in its

support of simulation.
o4

DCDL was created specifically to design digital hardware or firmware

using an algorithmic language to express software functions which then are

candidates for design in hardware or firmware. It deals with the problem of

multilevel design by allowing the designer to model using a Logic, a Micro-

program and a Simulate (algorithmic) section, all integrated with a Declare

(Buffer) section. FORTRAN is the algorithmic language used to model the

function of sections of the system not yet designed. The Microprogram lan-

guage is well suited for high level hardware and low level softwarej the Logic

language is well suited for modeling low level hardware. The interface be-

tween the Microprogram and Logic level and the algorithmic level is dealt with

explicitly in DCDL in a Buffer section. The DCDS is strictly a batch simula-

tor. One of the unique features of the DCDS system is the "Consequential

Call" mechanism defined for simulating at the logic level. This mechanism

performs dynamic reevaluation of logic variables until a steady state for the

logic circuit is reachu . A check is made during dynamic reevaluation to

determine if a steady state is reachable. If an inconsistency in the circuit

is detected (no steady state can be reached) the designer is warned.

MPDL is a language based on ISP and is currently under development at

ISI. The main differences between ISP and MPDL are:

1. MPDL supports interprocess communication. Each independent process

can be specified independently and connected to other processes through

"connectors."

2. The semantics of MPDL, and especially the level of parallelism, are

better defined than those of ISP.

MPDL lacks data structures and, therefore, is limited 4n its power of

abstraction. Timing constructs are simple and high level. Some constructs of

MPDL (Timeouts) are particularly well suited for modeling communication

protocols.

51
Of|

6w-

The Data Flow Simulation System (DFSS) is used for a variety of purposes,

including research on alternative data flow architectures, data flow languages

and algorithmic behavior. The DFSS is capable of simulating the different

versions of data flow models. Data flow models consist of nodes intercon-

nected by arcs. Tokens flowing from node to node across the arcs model both

control and data flowing through the system being modeled. The strengths of

the Data Flow Simulation Systems are:

1. Data flow models provide a convenient and clean (no side-effects)

* method for expressing the parallelism inherent in algorit ii. and designs.

2. A large set of primitive nodes is available.

3. The simulator is interactive and provides both static (tracing) and

dynamic (breakpoints) debugging aids.

4. The simulator provides built-in measurement mechanism.

In addition the DFSS allows designers to abstract the behavior of data

flow modules. Data abstraction is available through data structures, although

the mechanism for defining data structures is not convenient. Like SOL and

SIMULA, DFSS allows recursion.

This information was obtained from Reference 29.

ON-LINE SIMULATION

One solution is to use the network itself for simulations. However, the

resources of an operational network are often required on a fulltime basis

and, once in use, cannot be removed from service for any length of time. The

type of simulation discussed here would operate in situ, providing performance

estimates of new techniques while the network is functioning. Such a simula-

tion, running as a background task to normal network operation, would gather

appropriate data on some set of proposed network changes. It is clear that by

using this on-line technique, the most realistic data possible can be applied

to the design problem. Furthermore, by having this simulation take place

on-line, very long runs can be conducted and the impact of day to day varia-

tions and network component outages can be ascertained. Since the network

node can partially process the data it measures, less data need be recorded

52

,1

for subsequent analysis, thereby both simplifying and greatly speeding up the

design task. This methodology can be applied to the implementation of a new

communications protocol; neighboring nodes could be programmed to simulate a

new or modified protocol in conjunction with the protocol that is currently

operational.

The scheme suggested can be applied to great advantage on problems of a

local nature. On the other hand, it would be ditficult to apply the technique

to determine the el'fect of more global changes on the network. For example,

if, instead of changing the characteristics of a particular line, the effect

of adding a satellite link between two distant nodes were contemplated, the

technique would be inadequate because it would require significant cooperation

between the nodes involved to conduct the on-line simulation. For this reason

it is necessary to extend this technique to cover such problems. This exten-

sion is much more complicated than the original technique.

A distributed simulation, in which two or more network nodes gather data

on some proposed network modification, can yield significant benefits since it

will be able to determine the effect of quite compli ted changes. For exam-

ple, if a new broadcast satellite link were to be included in the network,

then it could be analyzed by having the nodes that would participate in the

broadcast communications implemented with a subsidiary simulation program.

This would determine, in a cooperative manner, the effect of a satellite link

on their throughput and delay. Clearly, such a simulation is quite difficult,

but it would be beneficial because it might point out some potential pitfalls
18

of the broadcast link before its implementation.

TESTBED APPROACH

An alternative to simulation is the "try and see" approach: installing

the new equipment in a test bed and gaining actual operational experience with

it. The main advantage of this method is that we can obtain completely real-

istic answers to certain questions. We can investigate the effect of real

world problems such as noise, equipment failures and so on, especially over a

prolonged period of time.

53

On the other hand, it is very difficult to obtain sufficient realism for

other types of network situations, especially those involving large numbers of

nodes, lines or subscribers. No test bed can be large enough to contain all

of the situations of interest for test and analysis. Problems of scale (net-

work algorithms that become inefficient at a certain size of the network) are

very difficult to study either by simulation or in a test bed. Likewise the

problems of interaction between different levels of protocol in the network or

between the hardware and the software of the network computers are very diffi-

cult to study in a comprehensive manner in a test bed since only a small

fraction of the real operating conditions can be simulated.18

PARALLEL PROCESSORS

A natural approach to exploiting the parallelism typically available in

the simulation of queueing network models is to treat the simulation of each
19,20,21,35

server as a separate component. A packet-switching network con-

sists of a number of geographically separated processors, called nodes, joined

together with communication channels. The function of each node is to accept

addressed messages on its incoming channels from subscriber machines and from

other nodes of the network and select an appropriate output channel for each

message according to its destination address. Each node operates in parallel

with all of the others, processing messages as they arrive.

In performing a simulation of such a packet-switching network, a natural

approach to structuring the simulation is to consider each node in the network

as a separate subsystem of the whole system. We can then model each node as a

separate process and tie these processes together ae a set of cooperating

parallel processes, with messages passing as the method of interprocess com-

munication. A message sent between two processes then represents a message

sent over the communications channel between the corresponding nodes. Each

component is responsible for processing the events related to its server and

the actions of these components are synchronized so that the simulation is

carried out correctly.

54

ye.

----------------------- .V-----

This distributed approach potentially can result in a speedup of the

total time to perform a given simulation if a network of processors is avail-

able. Economical developments of such networks are becoming more and more

" viable with the availability of low-cost processors. An upper bound on the

parallelism available is given by the number of processes into which the

simulated system can be decomposed.

Decomposition Into Components

One technique to perform simulation in a distributed manner is to decom-

pose the simulation into components and develop a method to synchronize the

action of these componeits . Each component or node must maintain its own

clock (time). Also, each processor in a distributed system has access only to

its own local memory. This approach makes shared variables rather difficult

to implement but, in doing so, prevents memory contention problems and encour-

ages message passing for interprocess communication. There is no fixed rule

to do the decomposition, although a natural approach is to treat each server

in the network model as a separate component. However, for the case of ar packet-switched network where a number of switching computers are connected
together by a collection of communication channels, it may be more convenient

to treat each switching computer and its outgoing channel as a component. 3
Interconnection Graph

The movement of customers in the network model is represented by events

sent among the various components. The function of each component is then to

receive customer arrival events, process them, generate customer departure

events and send these events to other components. It also performs the neces-
sary synchronization functions and collects statistical data for output pur-

poses.

In event driven simulation, the simulation time sequence is monotonically

' nondecreasing, but is not an arithmetic sequence. The sequence values repre-

sent times at which the state of the system changes. We call such state

changes events.

55

'...........

Since each component is a producer and consumer of events, we find it

convenient to characterize the interrelationship of the components by an

interconnection graph. Each component in the simulation is represented by a

node in this graph. If component i generates events to be consumed by com-

ponent J, then there is a link from node i to node j. Input links are for the

reception of customer arrival events, while output links are for the departure

of customers to other components. It follows that nodes must generate events

for their output links in nondecreasing simulation time order. In an open

network a component which generates external arrivals is represented by a node

with no input links. Similarly, the sink which absorbs all departures from

the network is represented by a node with no output links.

Synchronization Of Components

For the purpose of synchronization, we assume that the components com-

municate with each other by message passing. Since events are processed in

nondecreasing simulation times, before a component accepts an arrival event,

it must ensure that no other arrivals can occur at an earlier time. The

acceptance of the next arrival event from ine of the input links forms the

core of the synchronization function. For the case of a single input link,

the synchronization is trivial. The situation becomes more complicated when

there is more than one input link. This component must then perform a merging

function to determine the arrival with the earliest event time across all the

input links. The operation is still quite straightforward when there is one

or more arrivals on each input link. In some cases, however, there may not be

an arrival on one of the irput links for some period of time. During this

period, the component cannot proceed with its part of the simulation and the

amount of parallelism is reduced. When there is no customer across an input

link, we say the link is "empty."

Link Time Solution

One technique to improve the amount of parallelism is to have the com-

ponents send timing information to each other. This gives the greatest

56

o -.

individu.l autonomy to each processor by allowing a server to step its simu-

lation time forward to the time of the .aarliest event at that server.

We now characterize the merging operation by defining a link time across

each link in the interconnection graph. When the link is non-empty, the link

time is simply the arrival time of the next customer on that link. When the

link is empty, the source and is responsible for maintaining the link time as

the greatest lower bound on the next departure across the link, according to

the information it possesses. In performing the merging operation, a node

first determines the input link with the lowest link time. If the input link

is non-empty, then it accepts the next arrival over this link, otherwise it is

blocked. A blocked node becomes unblocked only when the source end can calcu-

late a sharper lower bound or generate a customer across the empty link.

Unfortunately, with certain combinations of network topology and customer

plicement, a node may not be able to do either of the above and the simulation

halts in a deadlock situation. The following theorem gives the necessary and

sufficient conditions for a deadlock to occur:

Theorem: A deadlock exists if, and only if, there is a cycle consisting

of empty links which all have the same link time and of nodes which are

blocked because of these links.

it

This theorem gives us the means to find a solution to the deadlock prob-

lem. We first observe that acyclic graphs present no problem since the neces-

sary condition that a cycle exists is not fulfilled. Also, if we insist that

each customer must not have zero service time at any node, we can break the

necessary condition that the link times around the cycle of empty links are

identical.

Although deadlock can be avoided by insisting on a minimum service time

at every server, the presence of cycles may cause severe degradation in the

efficiency of the distributed approach.

57

Experimental Results

The results obtained for some very simp.a networks are very encouraging,

since the time to ccmpletion steadily decreases as the number of processors

goes up. However, enthusiasm should be tempered by realixing the particular

topology used is probably the best possible configuration for the distributed

approach to be successful.

Conclusions

The distributed approach to discrete simulation has been evaluated by

experiments performed on a network of microcomputers. It was found that for

*. some topologies of queueing network models, this approach results in a speedup

in the total time to complete a given simulation. However, for othe" topolo-

gies, especially those with loops, the speedup may not be significant. It was

also observed that the amount of message passing has a significant affect on

the performance of the distributed approach.

'"5

';- 58

L!
*i-

CHAPTER 3

TOPOLOGICAL DESIGN AND OPTIMIZATION TECHNIQUES

The basic problem ir, the topological optimization of computer networks is

to specify the location and capacity of each cosuunication link within the

network. The design objective in to provide a low cost network which satis-

fies constraints on response time, throughput, reliability and other param-

eters. It turns out that the full problem is completely intractable. Even

the largest computers in the world cannot optimize a 50-node network. How-

ever, useful approximations have been developed for various subproblems. The

approach is to take one subproblem at a time, isolate it from the main pro'-

lem. develop algorithms for its solution and then combine the results into thin

solution of the overall network design problem.

In this chapter we present the network design problem and some suggested

solutions. First, some background on the problem is given. Already, we see

what a large, complex problem this is. Next, we define four optimization

problems and discuss methods of solving them. Then, we di:scuss some of the

differences in designing centralized versus distributed networks.

TOPOLOGY DESIGN PROBLEM

Currently, the design techniques in use do not look at this most general

problem, but begin with assumptions about certain portions of the network

regarding topology and method of operation. Several particular structures

have been analyzed with substantial success. Heuristic topological optimiza-

tion procedures for these structures have been developed and .1pplied to prac-

tical network problems.

1. Centralized network problems require layout of lines and location and

characteristics of multiplexers, concentrators and multidrop lines. Gener-

ally, good methods developed for this problem are believed to give solutions

within 5 percent of optimum.

59

2. Loop networks are similar to the classic traveling salesman problem

which has been extensively studied and for which efficient algorithms are

available for moderate sized problems. As the number of points grow, subloops

have to be introduced to make the problem tractable.

3. Distributed structures which connect backbone message processing

nodes have been extensively treated for systems such as ARPANET and AUTODIN

II. Design techniques incorporate fixed (rather than dynamic) routing and

analysis procedures and, with this simplification, can produce effective

designs with on the order of 100 backbone nodes,

4. Hierarchical designs are common for larger networks and different

levels may be treated by different methods. In particular, certain levels may

be designed as centralized or loop structures. Design procedures currently in

use require extensive man-machine interactions to define the hierarchy, select

the local access techniq...g and partition the problem into manageable sub-

problems that can be treated via the procedures for handling items 1 through 3

above. Specific areas which still need attention are to determine the number

of levels (in fact, even defining what is a levell) and avoid predetermining

what different levels will look like.

* -"The hosts and terminals are the ultimate producers and consumers of

information. For most design purposes hosts and terminals are equivalent and
frequently it is convenient to lump them together under the term location or

site. The traffic matrix tells how many packets per second on the average

must be sent from site i to site j. when a new network is being designed, the

traffic matrix is often unknown. In this case, it is common to assume it is

proportional to the product of the populations of the two sites, divided by

the distance between them. The probability density function for packet length

is assumed known and the same for all sites.

The cost matrix tells how much various speed (leased) lines from location

i to location j cost per month. The cost matrix covers IMP and concentrator

locations as well as customer sites. In general, the cost of a line depends

on distance and speed in a highly nonlinear fashion. There is also a fixed

charge (e.g., modem depreciation) that depends only on the speed, but not the

distance.

60

i ". . + ° - - -+ -' - + -. .* -

Just to complicate things further, only a discrete set of speeds is

available. The optimum speed may not be a member of this set. In this case,

the affect of rounding off the line speeds may produce a configuration that is

far fram optimal. Performing the optimization using only the allowed set of

speeds is a difficult inteqer programming problem.

Network designers are expected to meet prespecified goals. Two common

performance requirements for networks are reliability and throughput. A

-i reliable network will not collapse if one IMP or one line goes down.

The parameters that the network designers can adjust to achieve their

goals are the topology, line capacities and flow assignment (routing algo-

rithm). The object of the entire exercise is to produce a minimum cost design

that meets all the requirements. Occasionally the problem may be turned

around. There is a certain budget available and the goal is to minimize the

delay subject to the available amount of money.

Any way you look at it, the problem is huge.

The basic principle upon which networks are based is that the customers

are not spread around uniformly. They tend to be found mostly in cities and

not so much in rural areas. Consequently, a hierarchical strategy seems like

a reasonable approach for computer networks. A cost effective structure for a

large network is a multilevel hierarchy consisting of a backbone network and a

family of local access networks. The backbone network is generally a distrib-

uted network, while the local access networks are typically centralized sys-

tems. In special cases, the network may consist primarily of either central-

ized or distributed portions. The topology design problem can then be broken

down into several subproblems: (See Figure 18)

Backbone Design

1. Backbone topology

2. Line capacities assignment

3. Flow assignment

61

. *. S* *. .'
-." -"S - a"S•."-.-L..-"k--"" . -' t.. -- - - - - - -".

. -.

BACKBONE LOCAL ACCESS NETWORK

CONC EN TRATOR H

IMP T - RMINAL HOST TERMINAL
I CONTROLLER

/i Figure 18. A two level hierarchy: backbone and local access network.

Local Access Design

1. Where to place the concentrators

2. Which customuers to assign to which concentrators

3.* How to interconnect the terminals within a customer site

Each customer site would have a leased (or dial up) connection to the

nearest concentrator or IMP. The IMPs would be connected by a highly

redundanit network of high speed lines (including satellite connections).

The concentrators would be connected to the IMPs by medium speed lines,

perhaps with or without redundancy. The customers would be connected to

their concentrators by nonredundant low speed lines.

logical optimization of any network. These problems include:

!etwork Choice : In general, there are

LII

C T

T

L ,, . ,• .T

ways of arranging M links among N nodes. Considering all possible designs

by computer is out of the question and no known computationally feasible

method exists for Zinding an optimal computer comnunication layout for a

system with a sufficiently large number of nodes.

Discrete elements: Components usually are available in discrete

sizes. Thus, line speeds can be at 2000, 2400, 3600,. . . ,9600,. .

50,000, bits/s, etc. This means an integer optimization problem must be

solved. Except in special cases for centralized tree design, no theoret-

ical methods now exist for problems of practical size.

Nonlinearities: Component cost structures, time delay functions and

reliability functions are all nonlinear. Tylical cost ftunctions are nei-

ther "concave" or "convex" and no analytical methods are avallable to

obtain optimal solutions for networks containing such elements.

However, in spite of these difficulties, enormous progress has been :1
made in the understanding of computer communication networks and in the

development of effective anialysi-s and ciyn procedures.

In this report we focus on threu ,rirly basic design parameters that we

must consider: \le selection of the channeJ capacities; the selection -f

the channel flows: and the topoloy itself. The performanre criterion is

the average message delay and the optimization is done under cost con-

straints. The optimm selection of the channel traffic consists of finding

those theoretical average message flow rates for each line that will result

in a mimimum average message delay; we are not describing the routing pro-

cedure that will, in fact, achieve these channel traffic values. We can

now define four optimization problems that differ only in the set of per-

missible design variables. In each of these problems it is assumed we are

given the node locations, external traffic flow requirements and channel

costs and also the flow we use is feasible (i.e., it satisfies the capa-

city, conservation and external traffic requirement constraints),

63

- - -- . - .- - - -

Capacity Assignment (CA) Problem

Given: Flow and the network topology

Minimize: Average message delay

With respect to: Capacities

Under constrainti Total cost

Flow Assignment (FA) Problem

Given: Capacities and network topology

Minimize: Average message delay

With respect to: Flows

Capacity and Flow Assignment (CFA) Problem

Given: Network topology

Minimize: Average message delay

With respect to: Capacities and flows

Under constraint: Total cost

Topology, Capacity and Flow Assignment (TCFA) Problem

Minimize: Average message delay

With respect to: Topological design, capacities and flows

Under constraint: Total cost

These four problems are solved in various degrees of completion; that com-

pleteness depends strongly upon the form of the cost functions. To get

some feeling for the solution to these problems we start with the simplest

possible case, solve it, than attempt to solve A progressively more diffi-

culc problem. First, consider the simplest case of continuous linear

costs, then a manageable case of continuous concave costs and, finally, a

difficult case of discrete cost functions in which the permissible channel

sizes are drawn from a discrete set.

THE CAPACITY ASSIGNMENT PROBLEM

One of the more difficult design problems is the optimum selection of

capacities from a finite set of options, Although there are many heuristic

64

B -'

approaches to this problem, exa,:t analytic i-esult-s are scarce. It is

possible to find reasonable (even optimal) assignments of discrete capac-

ities for, say, 200-node networks, but since these assignments are the

result of numerical algorithms, very little is known about the relation

between such capacity assignments, message delay and cost. Thus, to obtain

theoretical properties of optimal capacity assignments, we first ignore the

constraint that capacities are available only in discrete sizes and assume

they are available in continuous sizes.

With this assumption we solve the CA problem in which network topology

and traffic flow are assumed known and fixed. First, consider the case of

* •linear capacity costs. This problem can be solved by forming the Lagran-

gian and minimizing it with respect to the capacities. The exact solution

" is in the form of a square root channel capacity assignment. The concave

case can be solved iteratively by linearizing the costs and solving a

linearized problem at each iteration. For a logarithmic cost function the

CA problem yields a proportional capacity assignment. A more realistic

cost function is a power-law cost function. The optimal solution to this

problem is obtained by solving the Lagrangian and iterating to the solu-
17

tion. We do have methods of solving the capacity assignment problem when

the capacities may be chosen continuously.

In practice, however, the selection of channel capacities must be made

from a small finite set. In this caae, it appears that an approach based

upon dynamic programming is perhaps best. Howcver, the continuous optimi-

zation procedures described here do provide a means for selecting among

discrete capacities in a suggestive way. In general, the selection dir-

ectly from the discrete set of channel capacities is a difficult dynamic

programming problem. Another suboptimal technique for the solution of the

CA prob4mi is the Lagrangian decomposition (LD). The LD method is sub-

optimal in the sense that it determines only a subset of the set of optimal

solutions corresponding to various values of the maximum total delay.

However, in the case where the topology of the network is a tree, then a

simple And computationally efficient algorithm is known that optimally

selects channel capacities for an arbitrary discrete set of costs.

65

TRAFFIC FLOW ASSIGNMENT PROBLEM

Here the capacities are given and the flows must be determined to

minimize the average delay. This is a flow optimization problem which

belongs to network flow theory. The Max-Flow, Min-Cut theorem is the

foundation of this theory. In terms of network flow theory, the selection

of the flows can be viewed as a multicommodity flow problem with a non-

linear objective function. The method described gives an exact solution to

the FA optimization problem which is computationally efficient. It is the

flow deviation (FD) method which locates the global minimum. This method

is described in Chapter 5 of Reference 7.

One of the most popular heuristic algorithms used in solving the Flow

Assignment problehi is known as the minimum link algorithm. This algorithm

is conceptually simple and computationally very efficient. Its major

drawback is that it is rather insensitive tc queueing delays and, there-

fore, possibly far from optimum in heavy traffic situations.36

There is a simpler suboptimal method that produces a fixed routing

procedure and often yields good results using much less computation. The

class of networks for which this fixed routing algorithm is effective is

for the case of "large and balanced networks." This algorithm, known as

the Fixed Routing Flow Algorithm, will converge in a finite number of steps

since there is only a finite number of fixed routing flows to be con-

sidered.

CAPACITY AND FLOW ASSIGNMENT PROBLEM

In the two previous sections optimum solutions to the CA and the FA

problems were given. Unfortunately, when these two problems are combined,

globally optimal solutions are not easily obtainable. Instead procedures

are given to find local minima for the average message delay.

To find these local minima we begin with a feasible starting flow,

calculate the optimum capacity assignment under linearized costs, carry out

66

I.•

the FD algorithm to find the optimum floors, repeat the CA problem for these

new flows and continue to iterate between the CA solution and the FA solu-

tion until we find a (local) minimum. This CFA suboptimal algorithm will

converge, since there is only a finite number of shortest route flows.

The CFA problem may also be posed in its dual form, namely

CFA PROBLEM (Dual Form)

Given: Network topology

Minimize: Total cost

With respect to: Capacities and flows

Under constraint: Average message delay

This problem can be solved using the CFA suboptimal algorithm with minor

modifications. A description of this algorithm is found in Chapter 5 of

Reference 7.

For the discrete cost problem one of the following heuristic

approaches may be used.

Approach 1: Solve, iteratively, a routing problem with fixed capac-

ities, followed by a discrete CA problem with fixed flows, until a local

minimum is obtained.

Approach 2: Interpolate discrete costs with continuous concave costs.

Solve the corresponding concave CFA problem. Adjust the continuous capac-

ities to the smallest feasible discrete values. Reoptimize the flow as-

signments by solving a routing problem.

Four algorithms are next introduced, the first three following Ap-
proach 1 and the last algorithm following Approach 2.

1. Minimum link assignment

2. Bottom up algorithm

67

3. Top down algorithm

4. Discrete capacity algorithm

These algorithms are discussed in Reference 36.

TCFA PROBLEM

The topology design problem can also be characterized as follows:

Given:

Locations of the hosts and terminals

Traffic matrix

Cost matrix

Performance constraints:

Reliability

Delay/throughput

Variables:

Topology

Line capacities
Flow assignments

Goal:
Minimize cost

The (heuristic) solution espoused by Kleinrock 7 to solve this problem

is known as the concave branch elimination method (CBE). It is an iter-

ative form of the CFA (Capacity-Flow Assignment problem) solution and takes

advantage of the fact that channels may be eliminated (and, therefore, the

topology changed) as the CFA algorithm proceeds. The algorithm proceeds as

follows:

CBE Suboptimal Algorithm

Step 1. Select an initial topology.

68

LII

Step 2. For each channel in the topology make some approximation for the

cost as a function of capacity and linb cost (i.e., a power law

approximation or a piecewise linear approximation). For each

iteration in Step 3 oelow, use a linearized value for capacity

about the value of flow for that cbannel.

Step 3. Carry out the CFA algorithm. if, at any iteration, a connectiv-

ity constraint is violated, then stop the optimization and

proceed to Step 4; otherwise, let the CFA algorithm run to

completion and then proceed to Step 4.

Step 4. From the CFA suboptimal solution, select discrete approximations

for the continuous capacities obtained. For example, the con-

tinuous capacity may be "rounded" to the nearest allowable,

discrete value so that the maximum delay constraint is still

satisfied. This will tend to change the total investment or

cost.

Step 5. Conduct a final flow optimization by an application of the FA

algorithm.

Step 6. Repeat Steps 3 through 5 for a number of feasible random start-

ing flows (by selecting random initial lengths with a shortest

route flow).

Step 7. Repeat Steps 1 through 6 for a number of initial topologies.

The number of repeats in Steps 6 and 7 depends upon how many dollars one is

willing to spend to find the solution. Experience with the ARPANET indicates

that 23 to 30 repeats at Step 6 and a few (roughly five) initial topologies

(of which one is fully connected and the others are highly connected) at Step

7 yield good results.

There are other approaches to solving this problem. One of these is

known as the branch exchange m:thod. Starting from an arbitrary ieasible

topology, a class of local transformations is defined in which one branch is

removed and some new branch is added, so that feasibility (e.g., 2-connec-

tivity) is preserved. Then a (simple-minded) CFA problem is solved using a

minimum fit procedure. If this results in an improvement, then the trans-

formation is kept, otherwise it is rejected. This procedure is carried out

69

,. .o o. , - _ o . ° , .. ;- g r..- -'- - *.I u r r-.... • • - I, .r ,. . . . _- r

until the set of local transformations has been exhausted. An extension of

the branch exchange method is the cut saturation method. This method reduces 'I

the set of local transformations to those that are good candidates for im-

proving the throughput cost performance. It begins with a tree (or other low

connected topology) and identifies the critical cut set resulting from an FA

solution. It then adds a channel across this cut (or increases the capacity

of a channel in this cut). This is repeated until a feasible topology is

obtained. The procedure then continues, but, in addition, at each step the

least utilized channel in the network is removed (if feasible). After a given

number of iterations, the algorithm terminates. The key to all of these

heuristic algorithms is the availability of efficient methods for evaluating

topologies along with the random generation of several starting topologies (to

search for many local minima).

Both the BXC and CBE methods have some shortcomings. For example, the

BXC method requires an exhaustive exploration of all local topological ex-

changes and tends to be very time consuming when applied to networks with more

than 20 or 30 nodes. The CBE method, on the other hand, can very efficiently I
eliminate uneconomical links, but does not provide for insertion of new links.

To overcome such limitations, new methods derived from BXC or CBE have been

proposed.

The cut saturation method can be considered as an exten ion of the BXC

method. Rather than exhaustively performing all possible branch exchanges, it

selocts only those exchanges that are likely to improve throughput and cost.

In particular, at each iteration a routing problem is solved, the saturated

cut (i.e., the minimal set of most utilized links that, if removed, leaves the

network disconnected) is found and a new link is added across the cut, and the

least utilized link is removed. The selection of the links to be inserted or

removed depends also on link cost.

The concave branch insertion method identifies and introduces links which

provide cost savings under a concave cost structure. The method can be effi-

ciently combined with the CBE method to compensate for the inability of the

latter to introduce new links.

70

. ..~- - - -, 0 - - . - . -, . w r, - - -----. - -r-, .--- W, .r V . . - , .

In some applications with very irregular distributions of node locations,

or with constraints which are difficult to formulate analytically, network

design can be greatly enhanced using person-computer interaction. To this

end, interactive design programs have been developed in which the network

designer can observe (and eventually correct) the topological transformations

performed by the computer and displayed iteration after iteration on a graphic

terminal.

In general, the selection of the appropriate algorithm will depend on the

cost-capacity structure, presence of additional topological constraints,

degree of human interaction allowed and, finally, tradeoff between cost and

precision required by the particular application.

CENTRALIZED NETWORK DESIGN

Here we focus on the simplest type of network: a centralized system with

all messages flowing inward to some central processing facility. The central-

ized network model described here applies to two very important problems:

The terminal layout problem in which terminals are to be connected in

multidrop fashion or multipoint to a specified concentrator

* The centralized network problem in which concentrators themselves are
connected to a central processing facility

The two problems, terminal connection and concentrator connection, are

really the same, although they may sometimes differ in the network hierarchy.

Simple structures for the design of a centralized network are often based

on a shortest tree (often called a minimal spanning tree). Such a tree has

the smallest total number of miles of communication lines of all possible

trees. In general, the use of a tree in a centrali-ad design may not provide
04

the minimum cost solution. However, it can be shown that if all link costs

are convex functions of capacity (this implies continuous functions), then

some tree solution is optimal. On the other hand, the use of a shortest tree

connecting all communicating points even under the simplest and most ideal

71

conditions may still not be optimal. This is because one can add a set of S

additional points, called Steiner points, to an N-node system and then find

the shortest tree connecting the N+S points. If the new points are chosen

appropriately, the resulting tree is called a Steiner minimal tree and the

-. total length of all lines in the Steiner tree is less than the total length of

,. all lines in the ordinary shortest tree without Steiner points. A simple

i example of a shortest tree and a Steiner tree is shown in Figure 19. Physi-

* cally, a Steiner point corresponds to the location of a multiplexer, or con-

*- centrator, and although some procedures are available for finding good loca-

tions, this problem is presently tractable only by using heuristic procedures.

3

3 _STEINER

POINT
2

(a) 2

Figure 19. (a) Shortest tree (minimal spanning tree)
(b) Steiner minimal tree.

The most economical topology, even for a centralized network, may not be

a tree. In practice, there is a finite set of choices for line capacities

and, thus, line costs are not convex functions of capacity. In this case, a

nontree topology will often be more economical than any tree topology.

In describing techniques developed for multipoint or centralized network

design we first describe an algorithm due to Chandy and Russell using a

branch-and-bound technique that provides the minimum cost solution to this

constrained network design problem. We then focus on heuristic algorithms

that generally provide suboptimum solutions quite close to the optimum with

the desirable property of considerable savings in computation time.

Without constraints, the minimum cost network reduces precisely to the

minimum spanning tree of the network of nodes to be connected together. The

72

LID

. i r . -. - .

minimum spanning tree is, by definition, the spanning tree, a connected net-

work containing all the nodes and no circuits or closed paths, the sum of

whose link costs is a minimum. There are several algorithm to find the mini-

mum spanning tree. One of these is based on the Kruskal algorithm. It is

known as the Chandy-Russell algorithm. It is discussed in Chapter 9 of Refer-

ence 37.

Algorithms for finding the optimum constrained multipoint network may

sometimes require very large computer running times. Now we consider some

heuristic approaches. Three of these algorithms are the Esau-Williams algo-

rithm, the Prim algorithm and the Kruskal algorithm. These are described in

Chapter 9 of Reference 37. All three produce a minimum spanning tree solution

when constraints are removed. In that case they then differ in their running

time requirements. In the constrained multipoint design problem they produce

somewhat different designs as well. Experience has shown that the Esau-

Williams algorithm generally provides network designs closer to optimum.

The Esau-Williams algorithm essentially searches out the nodes that are j
furthest from the center (in a cost sense) and connects them to neighboring

nodes that provide the greatest cost benefit. Prim's algorithm does the

reverse: initially it selects the node closest to the center (again in a cost

sense), then connects in those nodes that are closest to those already in the

network. Kruskal's algorithm simply connects the least cost links, one at a

time. For application to the multipoint problem, constraints have to be

checked as a possible connection is made.

Other problems encountered in designing centralized computer networks are

finding solutions to the following problems:

1. Number of concentrators

2. Terminal assignment - terminal to which concentrator

3. How to connect terminals

4. Concentrator location problem - ADD and DROP algorithms

73

5. How to connect concentrators to center

6. Clustering problem

Solutions to these problems are discussed in Chapter 9 of Reference 37.

DISTRIBUTED NETWORK DESTGN

A variety of algorithms have appeared in the literature that focus on

least cost topological design of distributed networks. In most cases con-

centracor lot. ..ns are assumed known. It is then necessary to choose the set

of links, i.e., find the communications network that produces a least cost

design subject to various constraints.

Here we focus on the cut saturation algorithm that assumes link capacity

to be given and the same for all links in the network. It iteratively finds

the least cost distributed network for a specified throughput, subject to time

delay and reliability constraints. This algorithm is described in Chapter 10

of Reference 37. The cut saturation algorithm operates to relieve the most

heavily congested portion of the network. It consists of five basic steps in

any one iteration:

1. Routing. For a given network design, the optimal link flows are

fo,.nd that minimize overall average time delay.

2. Saturated cutset determination. Once the optimum flows are found,

the links are ordered according to their utilization. The links are then

removed, one at a time, ir order of utilization. The minimal set that dis-

connects the network is clled a saturated outset.

3. Add-only step. This adds the least cost links to the network chat

will divert traffic from the saturated cutset.

4. Delete-only operation. This step in the algorithm eliminates links

from a highly connected topology. One link at a time is removed at each

iteration; the one re oyed is the most expensive and least used.

5. Perturbation step. Once a desired throughput range has been at-

tanei, the network links are rearranged, using Add-only and Delete-only

operations to reduce the cost.

74

J,.

Another method is the branch exchange method. It iteratively adds,

deletes or exchanges links and computes the corresponding cost and throughput

variations. If the result of a topological modification is favorable, it is

accepted. The procedure is exhaustive and terminates when no more improvement

- is possible. The branch exchange method. is much more time consuming to run

. than the cut saturation method. (The cut saturation method is selective

rather than exhaustive in its choice of links to be added or deleted.)

Other algorithms for solving this problem are given in the section on the

TCFA problem.

The modeling, analysis and topological design areas for computer networks

have all made significant progress in recent years. General network struc-

tures with several hurdred nodes now can be handled, while specialized struc-

tures (such as centralized trees) with thousands of nodes are tractable.

Effective design for small networks of less than about 25 nodes, is routine

using the techniqaes that have been discussed previously. Design of networks

with appreciably more nodes requires a high degree of both analytical and

programming skill. Among the major open problems for large network design

using present philosophies are the problems of clustering and partitioning.

It appears that these problems will be well in hand in the near future, but

that new design philosophies will have to be developed for general network

structures with significantly more than one thousand nodes.

75

CHAPTER 4

PROTOCOL VALIDATION TECHNIQUES

INTRODUCTION

Most of the work on formal specification of protocols focuses on the

logical correctness of the protocol and not on the service it provides.

Approaches such as state diagrams, Petri nets, grammars and programming lan-

, guages have been applied to this problem. These techniques may be classified

into three main categories: transition models, programming languages and

combinations of the first two.

PROTOCOL MODELS

Transition models are based on the observation that protocols consist

largely of relatively simple processing in response to numerous "events" such

as commands (from the user), message arrival (from the lower layer) and in-

ternal timeouts. Consequently, state machine models of one sort or another

with such events forming their inputs are a natural mode]. Models falling

into this category include state transition diagrams, grammars, Petri nets and

their derivatives, L-systems, UCLA graphs and colloquies. However, for proto-

cols of any complexity, the number of events and states required in a

straightforward transition formulation becomes unworkably large.

Programming language models are motivated by the observation that proto-

cols are simply one type of algorithm and high-level programming languages

provide a clear and relatively concise means of describing algorithms. A

major advantage of this approach is the ease in handling variables and para-

meters which may take on a large number of values.

Hybrid models attempt to combine the advantages of state models and

programs. These typically employ a small-state model to capture only the main

features of the protocol (e.g., connection establishment, resets, interrupts).

This state model is then augmented with additional "context" variables and

processing routines for each state. These context variables and processing

77

r.~~~~~~ -7-*, ~r;- nr

It

routines are implemented in the programming language. In these hybrid models,

the actions to be taken are determined by using parameters from the inputs and

values of the context variables. The action at each major state is calculated

using these inputs and values according to the processing routine specific for

this state.

Finite State Machine Model

Finite state machines were proposed quite early to specify protocols. A

single finite state machine can be used to describe the global state of "he

protocol or, alternatively, one machine can be used for each party. Each part

of a protocol residing at a single process is called a party of the protocol,

* i.e., a party is a portion of a process which is relevant to a protocol. The

single machine and the coupled machine models are theoretically equivalent and

they are theoretically applicable to any protocol having finite parties and a

bounded number of topologies. When a protocol with a multiple topology char-

acteristic is represented by this model, a different set of global states

corresponds to each permitted topology. Topology evolution can be represented

by allcwing transitions between states of different sets. Since the number of

global states is finite, only a finite number of topologies can be repre-

sented. More detailed description of the use of finite state machines can be

found in References 38 and 39.

Petri Nets And Related Models

Petri nets are graphs representing interacting processes contending for

resources. Petri nets consist of transitions and places, interconnected by

edges. Transitions model processing while places model the state of the

system. The dynamics of Petri nets are described by tokens flowing from

places to places across transitions. The presence of tokens on places causes

transitions to fire, thereby causing some tokens to be placed in the output

places of the transitions. The primary issue in Petri net research has been

Liveness and Safeness. These two properties deal with deadlocks, traps and

other control flow anomalies. Little attention has been paid to timing issues

with exception of some work done on timed Petri nets.

78

-- . -, .- * * . * •-- * ~

. -I 4 - *e v ' wyr r .~rW U r7 ~ r'r ~', -.. .

The theoretical applicability of Petri nets as a descriptive model is

broader than finite state machines. Some protocols having an infinite number

of states can be represented by a Petri net in which the number of tokens can

grow without limit. However, the Petri net model is not universal because

certain party characteristics are not represented in this model. Petri nets

are convenient for representing protocols which can operate with various

amounts of some resources (e.g., number of buffers, etc.). Petri nets will

also be convenient for representing parttes in which several events may occur

in arbitrary order.

The principal practical shortcoming of Petri nets (as well as state

machines) is the rapid growth of the graph with the complexity of the proto.

col. To alleviate this, enhancements and generalizations of the basic model

have been proposed and used to represent protocols. The enhancements result

in a more compact notation and also have a broader theoretical applicability

as a descriptive tool than the basic Petri net, but their generality makes

them more difficult to analyze.

Another shortcoming of many protocol validation techniques, including

finite state machines and Petri nets, is the fact that they do not keep track

. of time. Common Petri nets do not express time intervals a3signed to the

duration of various operations, e.g., time-out intervals. However, the defi-

nition of a Petri net can be extended. Petri nets with time intervals assign-

ed to the transitions are called timed Petri nets. By extending the princi-

ples of Petri nets new formal means have been elaborated, namely the evalua-

tion nets (E-nets). The extension consists in introducing additional types of

nodes and attribute tokens and blocking transitions by logical conditions.

High Level Programming Languages

In this mode, each party is represented by a formal description similar

to a high level program. Since these languages are universal, they permit the

representation of any party characteristic. The characteristics of a party

are given by the (possibly infinite) set of all possible pair of incoming-

outgoing message sequences, i.e., the characteristics describe all possible

79

L

behaviors of the party. However, in the standard way in which these languages

are used, only simple topologies can be represented. In practice, standard

high level programming languages are convenient for representing numbers,

data, variables, counters, etc., but not complex control structures. There-

fore, this model was used mainly to represent the data transfer aspects of

protocols while the graph models (state machines and Petri nets) were used

mainly to represent the control aspects (synchronization, initialization,

etc.) for which they are more convenient.

PROTOCOL VALIDATION

Protocol validation assumes there is a clear definition of protocol

perfo:mance goals or the capabilities to be provided by the protocol to its

users. Typical computer communication protocols perform both data transfer

and control functions. For data transfer, performance goals include avoiding

loss, duplication or damage of messages transmitted and delivering them in the

- proper sequence. For control functions, reliability goals involve the proper

initialization and synchronization of control information on both sides of a

connecticn. The possibility of deadlock and the consequences of protocol

failures must be considered in assessing protocol reliability.

Transmission medium characteristics provide another important input to

the protocol validation task. The operation of a communication protocol can

be modeled by two automata connected by a transmission medium. The automata

receive commands or events from their respective users and from each other via

the transmission medium. Protocol validation consists of demonstrating the

fulfillment of constraints on the operation of the composite system. These

constraints may reflect the reliability performance goals, i.e., validation of

the protocol in its potential operating environment.

The following points describe different aspects of protocol operation.

Protocol validation can be considered the analysis of these different aspects

and the comparison of the results obtained with the operational requirements.

80

L.

. -.-

Reachability Analysis

The basis for all subsequent validation aspects is an analysis of the

possible transitions of the overall system. The reachability analysis yields

the transition diagram of the overall system.

Deadlocks

A deadlock is characterized by a state or set of states of the overall

system, reachable from the initial state of the system, for which no further

transition is possible. Deadlocks must be avoided, since once the system has

arrived in a deadlock state, it is blocked forever.

Liveness

A state is live if it can be reached from all states of the overall

system that are reachable grom the initial state. Usually a protocol contains

a so-called "home state," or "steady state," which is live and from which all
pertinent operations of the protocol can be reached.

KLoops

Each protocol with a home state contains a loop in the transitiin diagram

of the overall system starting at the home state and leading back to it.

Usually, there are other loops necessary for the operation of the protocol.

In addition, during the design phase of a new protocol, other loops might be

found in the transition diagram. They are undesirable since their execution

does not advance the useful processing of the protocol. Depending on the

relative speed of different operations, these loops could be followed by the

system an unlimited number of times.
'1]

Self-Synchronization and Stability

A system is self-synchronizing if, started up in any poss.ble state of

the overall system, it always returns, after some finite number of transi-

tions, into the normal cycle of uperation including the home state. This

. -

property is important for error recovery in an unreliable environment where,

for example, the transmission medium does not always function properly or one

station does not follow the prescribed protocol due to a software or hardware

bug or the protocol is not properly initialized. The self-synchronizing

property implies protocol stability, because it ensures that the protocol

reverts directly to its normal mode of operation after eny initial or i.ter-

mittent perturbation in the synchronization of the two communicating sub-

systems.

VALIDATION METHODS

A number of formalisms have been used to specify protocols, including

flow charts, programming languages, state diagrams, state transition matrices,

Petri nets, UCLA graphs and prose. A table taken from Reference 40 comparing

protocol validation techniques is given in Table 7.

There are two main categories of protocol validation: reachability

analysis and program proofs. Reachability analysis is based on exhaustively

exploring all the possible interactions of two (or more) entities within a

layer. It is particularly straightforward to apply to transition models which

have explicit states and/or state variables defined. For a given initial

state and set of assumptions, this type of analysis determines all of the

possible outcomes that the protocol may achieve. The major difficulty with

this technique is "state space" explosion.

The program proving approach involves the usual formulation of assertions

which reflect the desired correctness properties. The basic task is then to

show that the protocol programs for each entity satisfy the high level asser-

tions. These assertion methods are more successful with data transfer aspects

of protocols since they can represent whole classes of sequence number in

single symbolic assertions. A major strength of this approach is its ability

to deal with the full range of protocol properties to be verified, rather than

only general properties.

82

2.
-7-.-----.- --

Principal Modeling Analysis Focus Protocols Conditions Hard Steps Additional
authors formalism technique analyzed checked work needed

Danthine Partitioned Compatible Control Cyclades Deadlock Define FSA Data transfer
Bremer FSA (plus paths TS looping

algorithms) EDF-GDF asymmetry

Brand Algorithms Symbolic Data micro I/Q Deadlock Define Initialize
Joyner execution Uans- ARQ looping assertions complex media ,

assertions fer data user commands
transfer

Rudin FSA Compatible Control X.21 Deadlock Define FSA, Complex media
West paths completeness assertions looping
Zafiropulo composite FSA data transfer

Bochmann FSA with Composite FSA Both X.25 Deadlock Define FSA, Automation,
variables, assertions ARQ looping Prove Complex media
algorithms adjoint states HDLC liveness assertions

Harangozo Formal Both HDLC Define Flow control
grammars grammar user commands

verification

Hajek Algorithms Composite FSA Both ARQ Deadlock Define Complex media,
ARPA TCP looping algorithm, state

termination assertions explosion

Symons FSA Composite Both ARQ User Define FSA, Automate
augmented Petri net ARPA NCP provided assertions assertions
Petri nets simulation

Gouda FSA Composite FSA Control ARQ Deadlock Define FSA, Complex media,
compatible boundedness Form proof protocols
paths automation

Table 7. Comparison of some protocol verification techniques.

83i

.

r.3

A third approach is a hybrid approach. This could combine the advantages

of both of the above techniques. By using a state model for the major states

of the protocol, the state space is kept small and the general properties can

be checked by an automated analysis.

Global State Generation

One of the most common validation techniques is exhaustive global state

generation. The theoretical applicability of this technique is limited to

protocols with bounded number of topologies and finite state parties. The

practical applicability is limited to very simple topologies (up to six par-

ties). An advantage of this technique is that the state generation can be I
easily mechanized and several properties can be automatically tested. Some-

*: times, properties of the total space can be validated by generating a small

subset of the states. This can greatly increase the applicability of the

technique.

Assertion Proving

Another common protocol validation technique is assertion proving, which

is applied to the protocol description as if :he description were a parallel

program. This technique is usually applied to protocols modeled in high level

programming languages but theoretically can be applied to any other model.

The usual way of applying this technique is to attach a predicate of the

variables' values to certain points in a program and prove that whenever the

program reaches these points the predicate is true. The method can be gener-

alized to protocols with an unbounded number of topologies provided that the

desired predicate and the (possibly unbounded) sets of points can be expressed

by bounded expressions. In practice, assertion proofs are applied mainly to

simple topologies, but sometimes have complex parties. Since the construction

of proofs may require creativity, this technique cannot be fully automated.

However, quite powerful theorem provers have been constructed which are cap-

able of automatically proving many of the required properties. While global

state generation is more convf 4ent in proving control properties (e.g., that

certain events will or will not occur), assertion proving is used mainly in

proving data transfer properties, particularly in protocols involving parties

84

with large or infinite state space. The two techniques can be also combined

to capitalize on the advantages of each.

Induction Over the Topology

By this technique, the holding of a property or the occurrence of an

event is proven by showing certain conditions will propagate throughout the

topology. The use of induction over the topology is theoretically applicable

to protocols of any characteristics, provided the topology is unbounded and

can be represented as described in Reference 41.

Adherence To Sufficient Conditions

In this technique, the protocol is designed so each design step is done

satisfying conditions sufficient to guarantee the required properties. That

is. instead of designing a protocol and later proving its correctness, this

technique is aimed at directly designing one which is correct by construction.

This technique can be used in any topology and party characteristic and its

main advantage is that it is easy to apply and that correctness is directly

guaranteed. Its main shortcoming is that sufficient conditions could be too

strong, i.e., there may be many correct protocols that will be rejected be-

cause they do not satisfy the sufficient conditions. On the other hand, tight

sufficient conditions (or preferably necessary and sufficient conditions) are

usually complex and difficult to find.

Partial Specification and Validation

Depending on the specification method used, only certain aspects of the

protocol are described. This is often the case for transition diagram speci-

fications which usually capture only the rules concerning transitions between

major states, ignoring details of parameter values and other state variables.

SARA and GMB

The need for formal methods of verifying communication protocols has

motivated a great deal of research in recent years. The SARA Graph Model of

85

-~~~~~7 1(-- -. K ..

Behavior (GMB) provides a powerful tool to model and validate protocols.

Generally, the GMB control flcw primitives are sufficient to clearly express

protocol interactions at an abstract level. However, when necessary, the

GMB's data flow and interpretation models are available to remove ambiguity.

Modeling in the control domain often permits completely automatic analysis of

a protocol, but runs the risk of an explosion in the number of control states.

Use of the data and interpretation domains makes available abstractions which

significantly reduce the number of control states while providing enough
information to permit semiautomatic validation.

There is a duality between state-transition diagrams and GBs. In a GMB,

states are modeled using control arcs. The fact that a system is in a partic-

ular state is modeled by the presence of a token on the arc corresponding to

that state. Most protocols contain a small number of distinct states, making

it feasible to model all states entirely in the control domain.

Signals flowing can also be modeled using control arcs. A separate

control arc may be used to model each separate signal. For example, in the

X.21 interface, placing a token on a control arc used to model a signal repre-

sents a circuit changing its state to satisfy the meaning of that signal.

Transitions are modeled by control nodes which can absorb tokens from one

state and place tokens on its successor state. Receive transitions absorb

Ntokens from the arcs modeling the incoming signals. The act of absorbing a

token from an arc models the fact that a component has reacted to a change on

its input circuits. Send transitions place tokens on the arcs modeling the

outgoing signals. The act of placing a token on an arc models a component

changing the status of an output circuit in a manner which satisfies the

meaning of an outgoing signal.

This information is discussed in Reference 29.

86

CHAPTER 5

AVAILABLE DESIGN TOOLS

This chapter presents four currently available design tools. A synopsis
of their capabilities is given in Table 8. Two of them tools, MIND and
GRINDER, are software packages to design, analyze and maIntain telecomuni-
cations networks. The other two, SAM and POD, are for designing hardware and

software systems.

MIND

Introduction

MIND, the Modular Interactive Network Design System, is an interactive
system that allows the user to design, analyze and maintain centralized tele-
communications networks. (See Figure 20a.) Since point-to-point networks or
subnetworks are special cases of multipoint networks, MIND is also useful in
the design, analysis and maintenance of such architectures. (See Figure 20b
and Figure 20c.)

MIND Architecture

A high level structure diagram of MIND is given in Figure 21 illustrating
its major functional blocks and their interrelation. All comunication with
the user is done via an interactive executive program which maintains a dia-
logue with the user and controls the execution of the background applications.

The applications are divided primarily into two groups. The first group in-
cludes Network Editor and Design modules and allows the user to generate and

maintain centralized ietworks. The second group contains the Multipoint Line
Simulator which allows the user to study the response time/throughput perfor-
mance of centralized networks by modeling traffic loading and details of line

protocol.

87

w $4 a. .4.&4
4 J03 1- 0 '-4

CO .-4 0 1 1-44
A o- *0V 4o4 00 0 0' 01 a a V 4

6a 14 c4 alA, # -4 WO V- 4 14. '

'M0M0 - 4$48 1 yM V-400
60 0 t4 -4 re a0a0r4$ 9 M

&~' 4 0 -4 0 0410 14 4 A0 4 4.
0 1 .H P.21

* a' u 4 :3,1 0 .44 lop. Cc aOe M 0 1
4 4j 54j '0 '4' L'. -4 J .0

u -46a1u I . 0 cO - A3 'oe $44
4) VM~ oo / 4 4 0 0 4.4 H 406 Nt Q0 00 4

C0 '00 MV %4 di #-A4 -
14 .0. *S0f'06'

0 064 o0 F.4 '0 1)0
0 P4~ 4J .4 ul 0 04 -.41 a C.- 0r

C O0 4 0 14 .- t" 0. r a4 4)
CW C4 -'4 0 600 4 $60u e

0- 0 4 VMn *%.4 14 ~ 04 00 D .
0,flufl E 0a~ 0' M61
04 6 0$ 0 0e0 P

r-4 v4-P

00000 c 41 0414 .1 0

*4 A
0 41

0r j a P4

S V441 0%

-4 - * 0 10
0 e4 S :a 0-

-A "04 d %OV U UF

44 60 4 L- I
.48 0 0

'-4 >" -14C O
* 4 04 0 -41 - 0
0 4') '401 .

c4 X- tp 00 4 -* 4* 41 $ 0 0 4
r. 44 r4 . 0 a R- 0

-A (0)4 @0 41 000 0>
0 640.t a 4 04) -H4

,4 0 0 .-4 w

0004 0 (A
0 0 V§~ 01.4 0

M-4 1 E4-4. 0 -4-4 C4 >

0W~C 0'0>0404 0

$44 04 V 4C
L) 4e4M 5e 0"4 4 0 .4

R140O8

0a 000

4) 0 >, (0 4.1 4J U

HC 4) 0) C -H 0) 4) 0
It 0 >-H C 4) >r
C_ $4 6H ., p
$4 -H w 4.1 u a0

>24 Cr U .r4 r4H-A
4)~ 4) C QP)) 0 $4 4) 41
r.$44 -HUH 04 0) p 02

0 -10 C4)Q 4) 4-)
O~ .)' O$4 0 >-i w2 I '4U

.14) C ' $4 r-4 4)
A H (a0 .0 04a4 H '

*c 'V 404J4-) 0' 4)40 4. > *A 'aA
*0I HO) 4)4() HNI t 0 0 4.14) to)0

Z H 4. $4 t4) W.C0144U
> (aC - 04$w44)04 O 04C

111i H4-) ~
4) d) (La04)) 00 W 4)

Q) 4) 44$w >4> 0J d)N~H 4Jr-
$4 $4 H 4) 4Jw H4)IV 44) H- t~

00 0to HO W 4M'V9 4)$4 OOC r
*H 4 ., ->1 H'0r 00 0 4-)0 $4U0
rVA- H) 4J 1O4) 4) 0 0 00CS 4J 4

00XO4 44 0?1 r $4 0 rrd2 04 ZO Z 0 0 04 0 '

00aa ___$

W~ .,4r.1J

-4 - .) 444-0 0t
4)C $4Cp 0 04

0) 0 04)

- > 00C
-4 a t~ 0) 44 WV$ 0H--

41)0 J-Z -H 00 0 H
COOr 4)0 0I to 0 -

1 O >1 $4-H a).) H94J 4

C) $4 -4 00) 41u
rd 0 D Q

U $4 V H 0r 4 :
4J 4)D 4) -4 $4 4

-) -O >t 4) WIU 0 0)
4 to Z)- C H 4) r. 0J O

aH a.4 -H OH 0''WC H .

00 4)-, fr4 C 4 000q 4

04 -H 't 0 mA . 4 0) (d
(d 0 $4Wr . - y0 W-H'4 4 E4

m) $ 0 0 0 ')c C .C4
4.) * 4~ () 4 4 to 4

*0 4).) 54
0 -' 0 w)$
E-H4 4) 01 $44H0

AH~ 4 0 Z4

0r2

0J U 0.1

14l C- 4))4)f
-$4 -HO 4 4r

(A -) 4J 'A))N
02) 9 o .O

-HO >14)4> I

4W $40
L) Ca44

B9

LO --- ,---

U2

U) 0 Ue•~~> ,-$4 ,. .

"4" 41 A~

, , 4- --U 0 to -d to4.
41. 04 w

-) 1- 4 .4 4 . OU0 . , 4

4 164 L .-N .) to q (d . , ,
1 .) w 1 m w w 0 +4 w s
4) t414 0 0) to r. 444 0) $ 0w 0J vi ~ 0l 0 0 cl 4J1. A V H

r-11 t .,i 0 & 1 .0 w 4 a .",I

:'- ~) * ti

0 4J '4 .to ~.0.) U~ x 1,4 -44J 4
V t 00d4) m V .1 -14 to. O
0 0 44 w 0 4 1

w 44 4J-c --1 4) 0 .
wl+ 00 (d .- .4 .f 0 0 loo

,c. . -t or. ,u . -4- 0 4 ' - .) ,

V 04 W 0 Lo u.-9

) 0U-a 4-) Z- 04. 0 s,-Q4 4. 0 U 4 0 mN 0 0

S-0wU rq 4) OH
NO 0 0N4 0 "" 0 o W -4

HJO0 - n4) 4) 0 A) iw4

t,- 14 --o it! rd P4(o t4 - m .' a

,(. a4 .

NO, .0 ~0)L

4 H "".

> ~ to . J.,1 4) U 4J
4. . 4 9 4J to t -4 to0 ~ 0

N u V 44 0 Q> 44) r. 000 0H4 N W. N 4 4-) r.UO 0. 0 -U) U) 0~j -H4J t00w 4 U .
0 0$4.1)

0)0 N) 0) 4.4 4.0 0 Lo O
31-4W20-4U-4

4.4q 4. 4) b~~0 . 4
H~0- 4J 0J 4J 0 UU~' 0 4)

X 44 -H (N V. a2 4)- .1~4 b) r
4J $4 44 44 fa 4J~ 0.0 94 04.k(1) 0 (a 4 0 4 U)0 44 * 0 4$44

4.3-10 4U (1)

-W C0tom(d 04N 4.U0 020 4 "1 #-4

C- 0H 0 As. 4 4ww0 0 w

41 *'- 14 4-)0) 9 0 . 0

m. r z.0)r D QO
00 -4r) 0 () 1 t)00 0 4 J c

e4 * .'4 ,

4 A 0 4 N 1- 0)0) $
H N tof0d044 4 -

0 0

4j 4- 0
OE'H H 4J 4

-4..) U

C., -"44
90

* ~ ~ - - A-4-

M4) H 0 0 (
4 P-4 4- 1a 0 4)

0) 1 0-jo a 0

r. t-H 01 rd -4 4) E4 4

0 HHr

q)~ 4) 0 0 90
Ln 4 4)

4J~

G) V 4 4) 4)

lz V 0 -)

IA 0

$4-

H0 4)
$4 0 ~ 04l .

4) ~) 4) U
*4 0 0 0 , 4) V -4

0~~~ ~ ~ 00 04 r o4

L0~-H)0 rq 4) U rq -4
0004 to 0 d to* HH 0

H0 Wa) t *HH-It r4 (
to0 & HO4)0 r.40 91.

0 0)
HH A

OH) (0 Q. u0 0H -H H-4 0
9 40N04 o m V_

to -,1 0 0l 0-:34 0 04) r4 >1 0s 00 H H H4
to 9) H1mLOt

4i) 0 r.V 4-) 04' U) U m
O Ca) 00 V V gt4 ~ U

0. 0 0 10 A
.H >) 04. (a

0 40
w.10 m fH 4 0m Ow 0

VU) W 1 OW 0A 0 a) 0 0 04)
OVO 0) 0 0O HOa o la4

ca w) r- 4 aJ.4. 4m 0 O
0 0 m) -r4 4) H).,

U --4 H 4 H U
0 V$ H1 H WV0 HO 0) 0 . 04)

? 0I H4 04 r.O 00igr- 0 0ir)m 40
Id 0 tv r4 4 (1) m 0(1))4) 4-)I d. 41)40

Ea 41 t Ucl o4

hOi

to 0

(1 OE-1

91

L .
l

-P4 4J -L r.rr

) u w

43 10 1-1 4

o ~ OH
43W ~-) T

4J0 -H 4.,1 t
~ 304.4 (a -4

1-) 4) E4EE4 0040

S 4)~ r: 4 4 0
0 4) 04 4jC0 w -Iz .~~ 4 4)~ 4'

4J 04) 4) 0
4J 0 41 4 4 0 0
.1- E.lrd w H N 4

43 M'* -H W 4J 4 -r-
4) 41 4 3t 4) U 44 4

0 04-4 '-4 W 44U~
EU (0 0)4 t 3I) w

H4 -) U) 4J H

4)

4)
0 u - a -

00 43 0)4

0o 1.4
44 0) 0) . j 04

W) 4) 0 .1.3 0 c 4) 0
0 4) 0

U 443 J O~i ' 4-)
H r 0 4 - E U -H ..1 .- 4H- 3t H 4J 144 EU . .1P to ~ ~ m) CAl 3) tv EU 4

0 4L) 0 *-4 EU 4 4) !) 43) 04H4 4J 1 4-)4' 43) 43) 4) 0E
044 4) EUl U 4) 40p

4 0 0 14J H * 4 H4 U4 HHH 0 E 1O 0 x C EU O 0H 043) 41 EU 04 43) (P 4) 4.4F PO 0H M) A I3 toE H)*- 4JH- 0 -H fUI V 43 04H4 0 44 4) 43) 4 .O
0 44 EU EUo

*04 EU 44 to) 4J fU 43 H4 0 U0
EU 43) 0 4)to0OlC H - H 4

U 0 0 C d) m m $.4) w.)t 1.4
43 r. 434 'r A 4) W t

to to W) d)) to, m4 COW9 A
0) z3 4) 4 > a r.* w) toE a)0u O

.4) 43 .) 0M4() OH- 4)1..a 04)to.- N U id HP4 N 4 0 1 043) 434) 0 r 4)

4) -4 0 4 E 41 4 H 434 E
4-) H1 433.44. 0)1 *1E -4' 143J (

(aE EU (4) 04 0 (V4- 0 0 04 A 0 0
u .4 U 00. 4 0 44 440 WEU W d)

F 41

E- 04M0 0

F--

* I 92

a. GENERAL "AULTIPOINT NETWORK b. POINT-TO-POINT TERMINAL- CONCENTRATOR
POINT-TO-POINT CONCENTRATOR-CENTER

LEGEND

A CENTRAL PROCESSOR

0 CONCENTRATOR OR
MULTIPLEXER

O TERMINAL

TRUNK LINE

REGIONAL LINE

POINT-TO-POINT TERMINALCONCENTRATOR

MULTIPO!NT CONCENTRATOR -CENTER

Figure 20. Network architectures.

LI

93

-L -i , ' _ ' - - -i .- : . . , . _ ..

INTERACTIVE EXECUTIVE

NETWORK EDITOR LINE SIMULATOR DESIGN

REPRT LINE INCREMENTAL

MPL NET- PARA-I
DAT WORK M E TEFS~

Figure 21. MIND architect.ires.
Network Editor (EDIT)

The Network Editor provides the user with capabilities to eeit the net- S

work iata base. The editor provides commands to:

1. Initially define a network data base by adding data elements (n-.Ies

and possibly links) and assigning values to the propertics associated with

each node and link.

2. Save copies of the network data base on disk and retrieve these

copies at a later time.

3. Modify the network data base by adding and/or deleting nodes and/or

links by assigning different values to tt.s properties of the nodes or links of

an existing data base.

4. Selectively display the property values of individual nodes or links

on the user's terminal.

94

The network is modeled with two data elements: nodes and links. A node

is either a source or destination of traffic (such as the center node or ter-

minal devices) or it moves information through the network (such as a concen-

trator). Links are communication lines in the network between pairs of nodes.

Each node and link has associated with it a set of properties which define

what each node and link does in the network.

MIND will generate a design of communication lines connecting nodes in a

centralized network. All communication in the network is considered to take

place through the center node which is the highest level in a centralized J
network. There should be only one center node in the data base. The center

node may be an actual central site or a backbone node in a larger network.

The center node may also be more than one computer and the associated communi-

cation and peripheral equipment.

The second level has one or more devices which are called concentrators.

At least one such device must be present in the model since all multipoint I
circuits must terminate at a concentrator, not at the center. In the situa-

tion where lines do actually terminate at the center, the user must enter a

separate node with the same location as the center to act as a concentrator.

The lowest level of the network is the connection of terminals. Termi-

nals, which serve as sources and destinations of traffic, are interconnected

by multipoint circuits. A terminal node can represent one or more terminal

devices at t i same location, in the same area code/exchange or even in the

same city. The user must assign values to node properties to account for all

the devices which are represented by the node.

Each node has the following properties associated with it:

1. Label

2. Street (STR): street address descriptor

3. City (CITY): city descriptor

4. State (STAT): 2 character code for the state (Post Office)

95

L_.

5. Area-Code/Exchange (ACEX): the 6 digit telephone comapany area code

and exchange

6. Role (ROLE): the role the node plays in the network; currently a

node can be a CeNTeR CNTR), a CONCentrator or similar device (CONC) or a

TERMinal (TERM).

7. Homing Point (HOME): for a terminal node, the homing point is the

concentrator to which it is assignedi for a concentrator, the homing point

specifies which trunks are to exit from the node to other concentrators or the

center; the homing point of the center node is not significant and ia ignored

* by MIND.

8. Location Identifier (LOC): the user can specify all the nodes which

are considered to be in the same location; the design program will not put

more than one node with the same nonblank location identifier on the same

circuit.

9. Receive traffic (RC): a measure of the amount of information

received by the node. Units are kilobits per second.

10. Transmit traffic (TX): like RC, but the traffic transmitted by the

: "node. Units: kbps.

11. Number of devices (NDEV): the number of terminal devices at that

node.

12. Availability (AVAIL): the fraction of time the node is available; a

measure of the node reliability.

13. Termination Cost (TER): the cost of termination equipment at the

node site.

It is important that the user of MIND understand the concept of a link

- and a circuit in the network model. A circuit is a description of a multi-

point line which connects terminals to a concentrator. The common carrier

determines the cost the customer pays for such a circuit by the specification

of the tariff. The carrier need not actually implement the circuit as it is

specified. The cost is usually the minimum cost for the user and the carrier

has the option to implement it in any fashion. MIND will represent the cir-

cuits in the design by adding links between the nodes on the circuit. The

actual layout of the multipoint line will be the same as the minimum cost

circuit as determined by the tariff module.

96

-

The link data element currently performs two functions: one, as input to

the design program it helps define the network; and two, as the output from

the design program it defines the desic, generated by MIND. As output from

the design, a link can represent a span in a multipoint line or a trunk line

(i.e., a connection between concentrators or between a concentrator and the

center). As a span in a multipoint line, the link is a mechanism for assign-

ing a cost to the circuit. Thus, if the user deletes a link from the design, p

the cost of the network will not necessarily be decreased by the cost of the

deleted link. In fact, the cost of the network may incr'ease as a result of

dropping a node from the design.

I
Each link has a circuit identifier associated with it. A link can belong

to (or be a part of) only one circuit. The identifier can be assigned by the

user or by the design program and each circuit must have a unique identifier.

As input to the design program, the links serve to define a circuit or

force a component of nodes to be placed on the same circuit. Each link has

the following properties associated with it:

1. Endpoints: tl.e two nodes at either end of the links

2. Circuit Identifier (CIRC): descriptor which specifies what circuit

this link is on or, of it is blank, that the link is not yet a part of the

circuit

3. Availability Fraction (AVAIL): the fraction of time the link is

available; a measure of the link reliability

4. Length (LEN): the mileage between the two nodes which are at the

endpoints of the link

5. Cost (COST): the cost incurred in the design by this link; the user

should be aware that removing the link (i.e., deleting a node) may cause the

design to be more expensive.

S
Multipoint Line Simulation qystem (MLSS)

The Multipoint Line Simulation System (MLSS) allows the user to enter a

model of his/her network and traffic load and obtain an analysis of waiting

97

LP

times and response times in various parts of the network. The model may be

finely tailored to the user's network by entering parameter values specific to

the system at hand. The user is able to specify the traffic (lenqth and inten-

sity) distribution, protocol (acknowledgement scheme, handshaking, control

messages) and network characteristics (e.g., line speed, number of terminals,

processing times, propagation delays'. The user also can obtain the values of

key measures of response time performance such as waiting times for input and

output messages and terminil response times. Empirical distributions as well

as statistical averages are available.

The focus of MLSS is on modoling the multipoint line. Polling (deter-

mining whether or not a terminal is ready to send input), selecting (deter-

mining whether or nut a terminal is ready to receive output), positive End

negative acknowledgement, error occurrence and recovery and hardware delays in

all devices are all modeled directly.

Simple models of the operation of the communication processor and central

processor are also provided so that issues of response time can be examined in

the context of a complete network.

MLSS was included in MIND primarily for the purpose of adding to the

user's understanding of issues relating line loading to response time. With

it the user can analyze issues such as the relationship between the number of

terminals or the amount of traffic on a multipoint line and the response times

users of that line can expect to receive. With this information in hand, the

user can then set the appropriate parameters in the MIND line layout procedure

K and obtain the design of a network satisfying a given response time con-

straint. Another approach would be to obtain line layouts for a variety of

loads and then use MLSS to examine their response time performance.

MLSS is primarily intended as a tool to provide response time statistics

for a typical terminal rather than for a particular terminal on a specific

line. Nonetheless, the user has the option of entering sufficient information

to closely model the operation of a specific line for which he/she has detail-

ed traffic information.

98

Other usea of MLSS include the comparison of protocols with different

features and options, examination of the effects of altering the mix of traf-

fic applications sharing the line and analysis of the sensitivity of response

time to variations in traffic mix and network configuration. Detailed and

exact analysis of a given situation is obtainable. Alternatively, an effi-

cient approximate analysis can also be obtained of a large number of cases

where only approximate information is available.

System Model

4 The system model is one of a transaction oriented system (e.g., inquiry/

response) where users contend for terminals and terminals share a multipoint

line via polling and selecting. Delays suffered at higher levels of the net-

work are modeled simply by a random distribution. The user is given a con-

siderable amount of flexibility in parametrically defining this random dis-

tribution. The line is effectively half-duplex (or full-duplex operating in a

half-duplex mode). Output has priority over input. MLSS also models the
presence of broadcast messages. Broadcast messages have priority over inputs

but not over outputs.

Figure 22 illustrates the life cycle of the modeled transaction along

with the performance measures monitored by MLSS. Nine points in time are

identified relative to the life of each transaction.

Time 1: The time the transaction arrives at the terminal. This may be a

customer arriving at a service desk or a broker following up on a request for

a quote, for example. Arrivals at a terminal are assumed to be independent of

one ar.other (Poisson).

Time 2: The time preservice begins. Preservice refers to all processing

* which occupies the terminal prior to the time the input message is ready to be

94 transmitted to the center. This could include keying time and time for any

preparation done at the terminal prior to depressing the "SEND" key. Tha time

between Time 1 and Time 2 is spent waiting for the terminal to become avail-

able.

99

w W

WAIT FOR AIPO OLLING AND SLR VICIE WAIT FOR ISELECTION AND
TERMINAL PRESEIVICE INPUT INBOUND By OUTPUT OUTBOUND POSTSERVICE

TEMIA PESIVIE LINE TRANSMISSION CENTRAL. LINE TRANSMISSIONI

TERMINAL RESPONSE TIME -
II"I

- I"I 4

OVER LL RESPONSE TIME

Figure 22. Message life cycle and performance measures.

Time 3: The time preservice ends. At this time, the transaction is in

the system and ready to be transmitted. It is waiting for the terminal to be

polled; i.e., it is waiting for the multipoint line.

Time4! The time polling Gf the terminal and transmitting of the input

message begins. The time between Time 3 and Time 4 is spent waiting for the

multipoint line.

Time 5: The time transmission of the input message ends and service by

the center begins. The time between Time 4 and Time 5 includes time spent

polling the terminal (positive), response to poll, transmission of the input

message and acknowledgement of the input message by the center. It also in-

cludes the time for timeouts and retransmissions due to the occurrence of

errors in these processes. The multipoint line is occupied during this time

interval. Contention for the center is modeled indirectly in the distribution

6- of service times by the center,

Time 6: The time service by the center ends. At this point, the output

message is ready to be sent to the terminal.

Time 7: The time selection and output transmission begins. The time

between Time 6 and Time 7 is spent waiting for the multipoint line.

Time 8: The time transmission of the output message ends. The time

between Time 7 and Time 8 includes selection of the terminal by the center,

transmission of the output message and the time for timeouts and retransmis-

sions due to errors occurring during these processes. This line is occupied

100

throughout this interval. Time 8 marks the last point at which the trans-

action occup4 es the line. The interval of time between Time 3 and Time 8 is

the time required to go through the network. It is directly affected by line

loading and is often an important constraint on the design of the network, in

particular, on the layout of the multipoint lines. We refer to this time

interval as the terminal response time.

Time 9: The time postservice ends. Postservice refers to all processing

which occupies the terminal after transmission of the output message begins.

This includes printing the output message (on hard-copy terminals) and any

other wrapping-up done at the terminal before it becomes available for another

transaction. Time 9 marks the end of the transaction. We refer to the inter-

val between Time 1 and Time 9 as the overall response time.

Error Models

Two types of errors are modeled, line errors and terminal errors. The

user may specify a bit errjr rate. Line errors occur randomly with a proba-

bility equal to the product of the bit error rate and the length of the mes-

sage. If a line error occurs. the message is retransmitted. The user is also

allowed to specify the maximum allowable number of retranL~issions.

The user can also specify the probability with which terminal errors

occur. Terminal errors are modeled as persisting for a sufficient length of

time to cause the maximum number of retransmissions and subsequent abortion of

the message.

Timeouts can also be set by the user for polling, selecting input message

transmitting and output message transmitting. A timeout is also assumed to

occur in the absence of an acknowledgement. In particular, a timeout occurs

when a message is correctly received and no positive ackowledgement is used, a

terminal error occu - or when polling or selecting without acknowledgements.

The description of the MLSS protocol models in the following section elabo-

rates further on this. The user specifies whether or not positive and nega-

tive acknowledgements are used in the system being modeled.

101

............... " " ' .. . ". ._' . ,' . , . = , ,

. q ' .. , I0.

Protocol Models - Four types of polling are modeled:

* Discrete polling (unacknowledged). The center queries each terminal in
turn if it has an input message which is ready to be sent. The ter-
minal either responds negatively or with a positive response followed
immediately by the input message.

* Acknowledged discrete polling. This is identical to unacknowledged
discrete polling except when the terminal has a message ready to be
sent, it gives a positive response to the poll without immediately
transmitting the message. The center then sends a "SEND" sequence to
the terminal and the terminal proceeds to transmit its input message.

* String polling (uninterruptable). The center sends a string of termi-

nal addresses requesting input messages from the terminals. If a ter-
minal has something to send, it informs the center before the latter
completes sending the next terminal's address. After an input message

is transmitted, the string poll picks up from where it left off. An
output arriving during a string poll must wait for the polling sequence
to be completed before it can be transmitted.

* Interruptable string polling. This is identical to uninterruptable
string polling except arriving outputs can interrupt the polling
sequence.

Two types of selection are modeled:

* Acknowledged selection. The center inquires if a terminal is ready to
receive output. The terminal responds positively. The center then
transmits the output.

* Fast selection. The center transmits a selection sequence, informing
the terminal it is about to send a message and then immediately sends
the output message to the terminal.

Random Distributions

The user is able to parametrically describe three types of random distri-

butions as part of the overall model of the network and traffic. In partic-

ular, a constant, or piecewise-linear, distribution can be chosen to model

message lengths (input, output and broadcast) and service times (preservice,

postservice and center).

102

*. r , -g .y. .*j7 -y . .W . . -- -,,-.- - I . 'J J 1

he

Available Parameters

Category COMM - Communication Processing Times3. The parameters in this

* category allow the user to account for processing and hardware delays asso-

ciated with the center and terminal during normal transmissions. Examples of

times which should be included in the values assigned to these parameters are

the time to execute software in concentrators polling the terminals and the

time required to transfer a screenful of information from a slave terminal to

the memory of its associated terminal controller. These include turminal

processing time for a poll, terminal processing time for a selection, terminal

processing time for input messages, terminal processing time for output, cen-

tral processing time for poll, central processing time for selection, central

processing time for input messages and central processing time for output

messages.

Category CMES - Control Messages. The parameters in this category allow

the user to specify the length of control messages used to implement the line

protocol being modeled. These include the following length of

1. poll sequence

2. positive response to a poll request

3. negative response to a poll request

4. poll sequence header

5. poll sequence trailer

6. "SEND" sequence in acknowledged discrete polling
• .7. selection sequence

a8. poitive response to a selection sequence

S9. positive acknowledgement of an input message

10. Positive acknowledgement of an output message

.negative acknowledgement of an input message

11. negative acknowledgement of an output message

Category SERV - Service Times. The parameters in this category allow the

user to model preservice, postservice and time spent being processed in the

center. The variables in this category form three groups of three variables,

.0

-'.- 103

i "

each of which defines a randum distribution. They describe the distributions

for the central service, preservice and postservice times.

Category ERR - Error Handling. The parameters in this category allow the

user to model the occurrence of line and terminal errors in the simulated

system. These include terminal error rate, bit error rate, poll timeout,

selection timeout, input message timeout, output message timeout and maximum

number of retransmissions before aborting message.

Category NET - Network Configuration. The parameters in this category

allow the user to specify details of the network configuration. These include:

1. Number of terminals on the multipoint line

2. Terminal control unit to which the terminal is attached. This is

significant in the situation where several terminals are controlled by a com-

mon TCU and the system does general polling. The user assigns an integer to

each terminal. Terminals having the same TCU number will not be polled indi-

vidually. The default is to keep each terminal separate.

3. Number of bits per character

4. Line speed

S. Average propagation delay
6. Modem turnaround delay at the central site

7. Input buffer length

S. Output buffer length

Category RUN - Simulation Run Options. The parameters in this category

allow the user to control MLSS running time and output. These include maximum

time allowed on this run, maximum number of simulated transactions, number of

trace output lines, terminal queue switch and empirical distribution switch.

Category PROT - Protocol Options. The parameters in this category allow

the user to choose the type of polling and selecting used as well as the type

of acknowledgements used. These include type of polling, type of selecting,

type of acknowledging used for input messages and type of acknowledging used

for output messages.

104

p .

Category TRAF - Traffic Specification. The parameters in this category

allow the user to specify the length and frequency of input, output and broad-

cast messages. Message arrivals are assumed to be Poisson; i.e., meassager are

assumed to arrive independently of one another.

Topological Design And Analysis Module (TOPO)

This design module allows the user to generate and/or evaltate c4esigns of

a given network. A near optimal multipoint line layout can be obtained under

the existing AT&T Multischedule Private Line (MPL) tariff subject to line

loading constraints. Terminals can be assigned to the nearest home (concen-

trator, multiplexer or center). The effect of adding or deleting a terminal

from the network can be evaluated and the analysis can be obtained. At any

point the user can obtain a report on the cost and layout of selected circuits.

The Topological Desigp and Analysis subsystem, TOPO, allows the user to

perform many useful functions directly related to obtaining a good line lay-

out; i.e., a low cost interconnection of network devices satisfying a given

set of constraints. It also contains post-processors which will analyme a

given layout and evaluate commonly used figures of merit in the areas of cost,
loar~ing and reliability. Finally, several of its modules are specifically
designed to deal with the problems which arise in maintaining a network; i.e.,

problems involving the modification of an existing layout rather than produc-

ing an initial layout.

Figure 20 shows the type of multilevel centralized networks treated by

TOPO. The highest level of the network is called the center. All communi-

cation is assumed to take place to and from this locationj commuication among

other locations is assumed to take place through it. The center may be an

actual central site or a backbone node in a larger network; whichever it is,

it is not significant to TOPO.

The second level of the network is comprised of one or more devices,

which we will generically refer to as concentrators. At least one such device

must be present in the model as all multipoint circuits must terminate at a

105

" I* I d l 'n I' n " f a , ' ' -.- * " " - -- --- "-" -

concentrator, not the center. Situations where circuits terminate directly at

the center are modeled by placing a concentrator at a separate node with the

same location as the center.

At the lowest level of the network are the terminals which serve as

sources and destinations of traffic. They are interconnected in multipoint

circuits tying them to a concentrator.

A network, as modeled in TOPO, contains precisely one center, one or more

concentrators and one or more terminals. Each terminal must be assigned to a

concentrator.

TOPO generates multipoint circuits. Trunks are links between pairs of

high level nodes. The user can enter trunks directly or, alternatively, they

can be generated by the line layout procedure.

* Assign Homes

The first step in the line layout process is to assign each terminal to a

concentrator. The information is recorded in the HOME property of each node.

This may be done in one of three ways, depending on the user's objectives.

The user may prefer to make the assignment manually using the EDIT routines.

In this way, the user can make assignments subject to loading constraints on

the concentrators. In particular, he/she can control the total traffic, num-

ber of multipoLnt circuits and number of terminals assigned to each concen-

trator.

The second way of obtaining an assignment of terminals to concentrators

is to use the REDO * comand in the TOPO/LL module. This command will produce

a complete line layout, assigning all terminals to multipoint circuits without

regard to any previously existing assignments. As part of this process, each

terminal will be assigned to a concentrator. The assignment is made strictly

on the basis of minimizing cost. Of the three approaches, this is the one

most likely to yield the lowest cost layout.

106

. . . .- J • ,o . -
'

- ' . -- -- ~. . - ._ o - -C a x r v - r - -" -

The third way of assigning terminals to concentrators is via the ASGH

command In the TOPO base. This command will assign one terminal, a lint of

terminals or all terminals to corcentrators o.a a "nearest neighbor" basis,

i.e., each terminal will be assigned to the concentrator nearest to it. The

command will also assign concentrators to the center.

Line Layout MLL)

The Line Layout subsystem allows the user to create and incrementally

design multipoint circuits. The user can edit and use parameters to constrain

the line layout to conform to limits on the number of devices and traffic on a

circuit. He/she can also force associations between nodes on a circuit and to

given concentrators. Thus, the user can take exicting circuits into account

and incrementally add to or modify an existing design. Alternatively, he/she

can examine what can be gained by a complete reoptimization.

The Line Layout procedure can work from scratch or on some (or all) of a

previously existing design as specified by the user. LL checks the validity

and consistency of the links entered by the user for the purpose of forcing

all or part of the line layout.

Another command which may be used is the ADD command. It allows the user

to find the best circuit to add a terminal node to and determine the incre-

mental cost of adding the node. ADD (and its existing counterpart DROP)

should only be used to maintain an existing network. The DROP command allows

the user to modify a layout by removing a node.

Report Generator and Cost

COST gives a brief summary report on the cost of the network on a concen-

trator-by-concentrator basis and is useful for obtaining very quick cost com-

parisons. For example, we might wish to compare two design strategies (one

with and one without concentrators) or see the effect of reassigning a node to

a different concentrator.

1

RSP gives a detailed report on .he cost and makeup of one or more cir-

cuits. A report on the entire network may be obtained. These reports will

-ontain the trunks catinecting the concentrators to the center and to ont

another. In addition to the cost of each circuit, these reports include a

listing of the drops and interexchange lines in a format very similAr to that

of a telephone bill. Also included in the report is a summary of the loading

on each circuit.

Reliability Analysis

TOPO allows the user to obtain an analysis of the availability of a given

network in terms of the availability of its components. The analysis is pre-

sented via several figures of merit computed on a device-by-device basis or

alternatively on a systeirwide basis. Combinations of these approaches are

also possible. Availability is defined as the fraction of time a given device

is functional. The user can also specify redundancy factors either individu-

ally or on a systemwide basis. The model used for the purposes of reliability

analysis is essentially a serial one, with parallel devices permitted for

redundancy. Thus, the model requires that all devices on the path between the

terminal and center be functional for coaunication to take place. If redun-

dant devices are specified, any one of the redundant devices is sufficient to

allow communication to take place.

The reliability analysis places somewhat more stringent constraints on

* the type of topology permitted than does the rest of TOPO. The REL analysis

outputs five figures of merit characterizing the reliabil.y of the network on

a systemwide basis. The figures are average values. The first is the percent-

age of terminals communicating with the center. The second is the percentaye

of traffic able to communicate with the center. The third is the percentage

of terminal pairs which are able to cowmn'icate. Fourth is the fraction of

traffic able to coauunicate through the center. The last figure of merit is a

distribution of the number of failed terminals, i.e., the fraction of time (on

the average) that a 7iven number of terminals will be unavailable.

108

Network Checkout

TOPO' a CHECK comand allows the user to execute a subsystem which will go

through the network data base and perform several error checks. These checks

are designed to identify many of the most cosmon user errors which would cause

difficulties if TOPO's design or analysis programs operated on them.

Availability

Available on the ARPAT.

Information Sources

This information was taken from Reference 24.

POD (PERFORMANCE ORIENTED DESIGN) TOOL

Introduction

POD (Performance Oriented Design) is a tool for modeling the performance

of computer based systems at various stages in the system life cycle. Essen-

tially, POD deals with time related and capacity related quantities such as

throughputs, response times, bandwidths, Ailization levels and component

* loadings. POD does not address factors such as tactical effectiveness, reli-

ability, availability and logical correctnest. However, POD can be used in

conjunction with other software engineering and system design tools that do

treat these factors.

Use of Performance Models

The basic function of any performance model is to determine the perfor-

mance of a "target system" when it is operating in a wtarget environment." A

POD model is a computer program that accepts as input a description of the
target system and target environment. The output of the POD program is a set

of numerical values that characterize the performa.ce of the system in the

environment. In the early phases of the system life cycle, inputs to POD

109

performanc- modelR consist of estimated values, values specified in the docu-

mentation of system requirements and, in uome cases, a few known values deter-

mined by measuring related existing systems. As implementation proceeds,

estimated values are continually refined and ultimately replaced by actual

measured values.

Present Capabilities

The present version of POD requires the specification of hardware and

software in terms which describe their interconnections and interactions.

This is achieved through the POD System Description File which includes Con-

figuration, Workload and Module Specifications. The Configuration Specifica-

tion describes system hardware characteristics (disk and random access storage

capacities, number of CPUs, device speeds) and interconnections. The Workload

Specification prcvides the model with a definition of the external source(s)

of jobs for the aystea to process. Job characteristics such as priority and

arrival rate are supplied in this component of the system description of

system .oftware structure for processing the workload. Logical flow of con-

tral and resource utilization requirements are specified here. POD enables an

aralyst to enter an initial System Description File which may be refined as

design and development proceed, increasing the detail and accuracy of the

model. Proposed cha!.ges to ain existing system or design may be evaluated by

altering this -i> and then creating a new system mo,'Ael for analysis. System

Description vile input and update, system model generation and system analysis

reporting are controlled interactively by the analyst.

Performance Oriented De iggn has recently implemented extensions t better

model additionaa s~stems. They are also useful to more accurately describe a

CPU. Different types of t.nstruction groups and their associated execution

rates may be A-scribed, enabling more accurate description of CPU utilization

tor different purposes. The Module Specification may now specify CPU utili-

zation by a selected instruction group (logical, arithmetic, higher level

language, etc.) offering more flexibility and accuracy in the model descrip-

tion.

110

In Reference 42 (January 1982) a recommendation is made for proposed FY82

*tasking to SGS Systems. This task was expected to be completed no sooner than

October 1982. Documentation describing these extensions to POD will. be avail-

able in the future. This task is desirable to model an executive in a distrib-

uted multicomputer environment and would result in &n updated POD to model the

* overhead associated with intercomputer communications. Appropriate hardware

*interconnections betwsen multiple CPUs must be developed so that the model can

be run and statistics gathered without resorting to multiple runs in an itera-

tive procedure. In addition, the capability to run multiple execs and applica-

tions tasks concurrently would be desirable.

Special Features of POD

POD has a number of special featuros that have been developed specifi-

cally to support life cycle performance modeling of computer based systems.

The most important of these features are:

1. A front end specifically tailored for modeling computer based systems

2. Facilities to support life cycle, rather than one-shot, modeling

3. An interactive modeling environen'

4. Internal algorithms based on analytic queueing theory rather than

discrete event simulation.

POD Front End

The key to discussing the POD front ftnd is to describe the conceptual

view of ccmputer based systems that POD users are expected to have. To the

POD user, hardware components are a set of "parameterized black boxes" whose

internal workings are essentially invisible. In all these cases the internal

engineering decisions that have led to a given set of parameter values are

hidden from the POD user: the only visible properties of a hardware component

are the parameters themselves. For the intended POD user, software differs

from hardware in several extremely significant ways. First, software does not

* consist entirely of a set of "off the shelf" components. On the contrary,

part of the job of the POD user is to design and implement software to perform

specific functions. Thus, the highly variable and richly detailed internal

*, 111a' | i n ' ' ' ' . .

struc..ire of software is directly visible to ;;he POD user. In addition to

having a visible internal structure, another very important difference is that

the estimated performance characteristics of individual software modules are

likely to change significantly during design and implemeitation. Also, the

actual structure of software is not known to a fine degree of granularity in

the early stages of system development. That is, POD must support the coarse

granularity representations of software that are provided in the initial

stages of system design and must allow these representations to evolve smooth-

ly into the more detailed representations that are generated subsequently

during design and implementation. In the view of the POD user, the environ-

ment in which a computer based system operates is regarded as a set of exter-

nal stimuli that causes software modules to be executed at various points in

time.

POD Facilities For Life Cycle Modeling

In addition to a front end that is tailored for modeling computer based

systems, POD provides special features to support "life cycle," as opposed to

"one shot," modeling. That is, POD provides facilities that enable models to

evolve over time and retain continuity with earlier versions, assumptions and

estimates. One life cycle facility that is given above is the modular repre-

sentation used for software. At times when detailed information regarding

software structure is unavailable, the POD user can specify coarse granularity

"aggregate" modules. Later in the life cycle, when refined structural informa-

tion is available, an aggregate module can be decomposed into a series of more

detailed modules. Another POD facility that has been specifically included to

support life cycle modeling is the Project History Data Base (PHDB). The PHDB

allows POD users to extract a variety of information from POD models, store

this information in a data base and then prepare reports on trends, exception

conditions and changes over time.

Interactive Modeling Environment

Another important feature of the POD modeling tool is its interactive

mode of operation. The POD user is able to work at terminals, vary model

parameters, request model evaluations and receive responses interactively.

112

Internal Algorithms Us* Analytic Qmeueing Theory

POD does not use discrete event simulation to evaluate system perfor- p

mance. Instead, POD uses mathematical formulas derived from queueing theory.

Availability

POD for distributed systems is not available now.

Information Sources

This in taken from References 42 and 43.

SARA (SYSTEM ARCHITECTS' APPRENTICE)

UCLA's Methadology Fnr Synthesis

The UCLA design methodology can be characterized as being requirement
driven and supportive of self documenting design of modular, concurrent hard- -

ware and software systems. Given a set of requirements and assumptions about

the environment, the designer conceives of a system to satisfy those require-

ment8

The fundamental rules which are recommended in this synthesis methodology

are stated below.

1. Every synthesis task must be preceded by an explicit statement of

intents.

2. Every significant aspect of intended behavior must be formalized and

associated with a measure by which success of the design can be evaluated.

3. For any synthesis tasks, the environment oi the system under design

must be explicitly modeled, This serves to separate assumptions about an

* existing environment from the system under design. The validity of the final

design is then guaranteed only under those assumptions.

113

.. t

4. Multilevel partition of a system under design must be allowable to

manage complexity through a refinement process. Every subsystem can be

treated recursively as a new synthesis problem.

5. Every synthesis must end by composing models of previously realized

elements which have been defined and tested. The test environments of these

elements must be consistent with the subsystem models which they are replacing

and subsystem's environments.

6. It must be possible to create models which hold true without forcing

implementation decisions until composition. It must be possible to introduce

assumptions about implementation at any level of partition and have those

assumptions hold through composition.

C 7. Models must be expressible in computer processible form to manage

complexity.

8. The computer suppor't system must be interactive.

9. It must be possible to separate structure from associated behavior in

*,. a synthesis model. Structure is meant to be a namespace for subsystems and

their interconnections. Such a namespace is to aid the enforcement of modu-

'" larity in a system design and it establishes the only points at which hypoth-

eses about modular behavior can be tested by an external observer.

10. It should be possible to directly fabricate a system synthesized by

the above methods.

Modeling Primitives

This section introduces a number of the modeling primitives used by SARA.

Module: A named module is intended to represent a structure whose inter-

nal fully nested structure is hidden from the outside. A module's only pos-

sible comunication with the outside is through a socket. Other than through

its socket, a module's name is known only to the structure within which it is

nested.

Socket: A named socket is part of a module but the socket's name is

known both inside and outside of its host module.

114

* * * - * - -

Interconnection: A named interconnection is a structure bridging two or

more sockets.

Any of the above Rtructural primitives at a given level of abstraction

may be modeled in greater detail at a lower level by describing its interrnal

structure in terms of the same module, socket and interconnection primitives.

A behavioral model may be associated with a named module, a named socket or a

named interconnection. The behavior of a module or an interconnection may be

observed only through the structures' sockets according to the behavior asso-

ciated with the socket.

Control Node: A named control node represents a step in a process being

modeled. A controlled data processor or a simple delay may be associated with

the control node.

Control Arc: A named control arc represents nonvolatile precedence rela-

tions between sets of nodes. Input control arcs enable the initiation of the

respective steps represented by nodes when tokens are present. Output arcs

pass a thread of control to one or more succeeding nodes. The arcs act as

place holders for tokens.

Tokens: Tokens are status markers which are associated with control arcs

to denote active threads of control. The token state of a control graph is

initialized and then it can be changed by an abstract token machine consistent

with conditions at the inputs and outputs of control nodes.

Input Control Logic: A logical relation among the input arcs to a node

specifies the precedence conditions that must be satisfied by token states for

the node to be initiated. Tokens from the initiating arcs which satisfy the

input relations are absorbed from one of the initiating arc set governed by an

OR relation in a manner established in -the token machine and from all members'1
of an initiating arc set governed by an AND relation.

Output Control Logic: A logical relation among the output arcs specifies

which arcs have tokens placed upon them when a control node is terminated.

When an exulusive OR output relation holds, a data processor interpretation

115

must decide which arc receives L token. When an AND relation holds, all out-

put arcs receive tokens.

Controlled Data Processor: A named controlled data processor, P1(NJ),

represents a data transformer which is activated when its control node, NJ, is

initiated. When the data transformation is completed, its control node, NJ,

is terminated. An interpretation of the data transformation and delay occur-

ring during the process is associated with P1 and, therefore, with NJ. Con-

trolled data processors can properly communicate (Read or Write) via data arcs

only with data sets, possibly through uncontrolled processors.

Uncontrolled Data Processors: A named uncontrolled data processor, UI,

is used to represent data transformers which always provide a stated function

of their inputs at their outputs. An interpretation of the data transforma-

tion and delay occurring during the process is associated with UI.

Data Sets: A named data set represents a passive collection of data.

Data structure may be associated with a data set.

Data Arcs: A named data arc statically binds data processors and data

sets. The data processor has Read or Wr.te access to a data set, consistent

with the data arc direction, whenever the processor needs it.

Modeling Domains

The Graph Model of Behavior (GMB) allows the modeling of various aspects

of communication protocols in three modeling domains: control, data and in-

terpretation. The control graph is a bilogic directed graph derived from the

Grapb M!odel of Computation (GMC) developed at UCLA and used by Postel to model

protocols, The three domains provide flexibility in modeling the behavior of

each component of a protocol. Modeling in the control domain often permits

completely automatic analysis of a protocol. However, the control flow anal-

ysis may lead to an explosion of the number of states. Use of the data and

interpretation domains makes available abstractions which significantly reduce

116

the number of control states while providing enough information to permit

semiautomatic verification. When neither of the above analyses is possible,

the complete GRUB provides a good environment for simulation experiments.

The Control Graph

The control graph consists of nodes which model events and arcs which

model precedence relationships among events.

Each node has an input logic expression which dictates the conditions

under which the node is to be initiated. An "OR* (+) in the input logic means

a node may be initiated through any one of a set of designated arcs. An "AND"

(*) in the input logic means that all arcs must pass control before the node

is initiated. A node's input logic expression may be an arbitrary function of

its input arcs using "AND" and "OR" operators.

Each node has an output logic expression which dictates the arcs through

which the node passes control upon termination. An "OR" implies a decision to

be made among designated arcs. An "AND" implies the passage of control

through more than one arc. As is the case with input logic expressions, out-

put logic expressions may be complex functions using the conjunctions (*) and

disjunction (+) operators. Figure 23 illustrates the control primitives with

their input and output logic expressions. It also shows a complex arc R,

which is used whenever there are multiple source and destination nodes.

A control graph is a static description of possible control sequences.

The control state of such a graph is represented by the distribution of tokens

on control arcs. When a node is initiated the tokens which enabled it are

absorbed. Upon termination of a node, tokens are created and placed on its

output arcs as dictated by the output logic. The semantics of the control

graph are carried out by underlying machinery: the token machine. This

token machine performs state-to-state transformations dictated by the graph,

starting from the initial token distribution, and terminating when no further

transformations are possible.

L1

. ."• .. 117

- -' .-' -. .. -.- *\ .- ' .- - - -.. - _ -. -._ ----, --- . - - . . -. -" - - o •,

S AS

!.: .- Al * A2,

Figure 23. Control graph.

The Data Graph

- The data graph consists of data sets, controlled processors, uncontrolled

processors and data arcs. Data sets model static collections of data. Con-

trolled and uncontrolled processors model data transformers. The initiation

of controlled processors is dictated by the initiation of control nodes to

which they are explicitly mapped. The termination of controlled processors

causes the termination of their initiating control nodes. The initiation of

uncontrolled processors is independent of the control grap: they are trig-

gered by changes to any of their input data sets. Data arcs model data paths

and access paths between data sets and processors. The semantics of all data

graph primitives are carried out by the token machine.

Interpretation

Interpretation is used to define formats of data stored in data sets and

transported through data arcs. It is also used to define transformations on

data performed by data processors and to define the decisions needed to deter-

mine flow of control.

L9

118

Data formats are specified in the form of FL/I declarations. Data trans-

formations are specified in the form of algorithms written in PL/I and aug-

manted with constructs used to effect delays in the flow of control and flow p
of data and to effect decisions in the flow of control.

Availability

SARA ie available on the ARPANET.

Information Source

This information comes from References 27 and 28.

GRINDER]
Introduction

The designer of a communications network is usually faced with many re-

quirements that have complex interrelationships. As good design and evalu-

ation techniques become available for various aspects of network design, the
need arises for software that will provide convenient access to these tech-

* niques and permit easy and effective designer interaction with them. The

GRINDER (Graphical Interactive Network Designer) software package was devel-|

oped at Network Analysis Corporation (NAC) to provide such a capability.

The various modules in GRINDER can be described in this way: ACUT will

do topological modifications to obtain a lower cost network given a traffic

matrix, tariff and a starting topology under constraints on throughput and

delay. It may add or delete capacity between nodes. GLAD designs the con-

nections in a local access network given constraints such as the maximum num-

" ber of concentrator ports available or line traffic capacity. A description .

of the nodes and traffic is required and the tariff selection needs to be

specified. HIER designs the backbone network given a network configuration

11

K119-

* describing the host nodes, terminal nodes, backbone nodes and the traffic

information. ROUT determines maximum throughput and optimal routes given the

traffic information under a maximum end-to-end delay constraint. -

The graphics routines are unavailable to the Navy at this time.

'.3

Network Editor

The Network Editor maintains a "network data base" which can be modified,

viewed and saved. The data base consists of nodes, arcs and links and the

properties which define them. It can be saved on disk and then read back into

the Editor at a later time.

Nodes are connection points in the network. In some manner they usually

initiate, terminate or move information through the network. They are labeled

by a node identifier. Each node has an associated set of property values

which may be modified by the user.

The program distinguishes between links and arcs. A link is defined as

the entire path, with no intervening nodes, between a pair of nodes; an arc is

defined as a particular path between two given nodes. Links can be referenced

by the node pair alone. Arcs must have an identifying label. The links of

the network are the connections between node pairs. Links are defined by

their node pairs and also have properties which can be modified by the user.

Arcs are links with labels. Arcs can be referenced at all times by their

label or by the node pair if there are no other arcs existing between that

node pair. Arcs, like nodes, have properties which can be modified by the

user.

TRAFFIC EDITOR

The performance of a network depends on the data traffic that the nodes

transmit and receive. The designer typically wants a network configuration

that will give satisfactory performance under a specific traffic load and

* pattern. The Traffic Editor allows the user to specify a wide range of traf-

fic patterns and loads.

120

- *, -

There are three components to the data traffic load and pattern:

1. The Uniform Traffic Requirement is an amount of data traffic that is

sent from all backbone nodes to all other backbone nodes.

2. The node to node Traffic matrix in used if there are special data

traffic requirements between specified node pairs. Each entry in this matrix

in added to the Uniform Requirement to come up with the total data traffic

requirement between each node pair.

* 3. The point to point Traffic requirements.

The traffic editor will be responsible for most manipulation of traffic

* requirements. It will consist of a number of routines which can be accessed

through the information structure described above.

L' The traffic editor will perform the following functions:

1 Read a triplet file from a disk file and store the backbone to back-

bone requirements in an NxN matrix, store the point to point requirements in

transmit and receive locations by node and, if given the mapping of nodes to

b-Ackbone nodes, collapse all point to point traffic requirements to the appro-

priate backbone nodes.

2. Write a triplet file of the backbone-backbone matrix.

3. Interact with the user to change or scale portions of the backbone

matrix.

4. Produce t-andom traffic patterns given a base requirement.

5. Produce uniform traffic requirement,

The data base necessary for the editor will consist of the following:

1. Number of nodes (NN)

2. Maximum number of nodes (NAXNN)i O

3. Vector of node labels (NL(NN))

4. Vector which maps nodes into matrix

5. Matrix of requirements (TR(MAXNN,MAXNN))

6. Code for a backbone node

9 7. Vector which maps all nodes to a backbone node

121

:.9o

TARIFF EDITOR

The overall purpose of a tariff editor module is to give GRINDER users

the ability to select tariffs for all line costing routines. The tariff

editor will allow the user to select one to five different tariff structures

from any of the available tariff modules. The structure will easily permit

implementation of new tariffs. The user can cost out his/her network by one

uniform tariff everywhere or by a unique tariff in each costing routine. The

user can easily compare the cost of his/her network by two (or more) different

tariffs .

Currently, there are two non-null tariff structures which can be used.

These are: PLT - Piecewise Linear Tariff Structure and TLPK - TELPAK. PLT

models such situations as simple cost per mile, bulk rate circuits with a

known average utilization and current narrowband tariffs. TLPK is a speed

dependent tariff structure. It models the situation in which TELPAKS are

available at all points.

A TELPAX is an AT&T tariff that allows a user to purchase either 60 or

!40 service equivalent lines at substantially reduced rates. The user must

:ay for all 60 or 240 lines even if he/she requires fewer lines to meet

.s/her needs. The TELPAK design problem is then to find the most economical

arrangement of TELPAKs and private lines to meet a set of flow requirements.

In this editor, the user can invoke tariffs for GLAD, ROUT, HIER/CBA and

HIER/LAL. Any routine that costs out links will be able to use any tariffs

that were present.

Whenever a module that does costing is called, the user will be asked

which tatiff he/she selected applies (NOTE: GLAD users can indicate two

choices for trunk tariffs and two choices for multipoint tariffs). A tariff

executive program will then be called for all costing and it will know which

tariff will be used and all of its parameter values.

122

ACUT

The programs contained in the ACT module of GRINDER are for the running

of the Automated Cut Saturation Algorithm (ACUT). The module contains the

routines necessary to automatically design a low cost packet-switched network.

The networks generated will meet a set of user specified performance measures

(i.e., throughput, delay, preserving 2-connectivity, etc.). The programs will

- report to the user the topological modifications made along with throughput

and cost (the critical performance measures in the design phase).

The ACUT algorithm is essentially an "intelligent branch-exchange" algo-

,,-- rithm. In simplest terms, the algorithm attempts to maintain the network's

*" throughput performance between two bounds while reducing cost. At a particu-

lar design iteration, a topological modification is made. To maintain or

bolster the throughput performance, capacity in the form of comunication

lines is added across the "saturated-cut set." To reduce cost, capacity is

removed from areas in the network not in the saturated cut. After a topologi-

. cal modification is made, a routing analysis is invoked (obtaining new cost, "

throughput and delay performance measures) on the new topology. The algorithm

then computes the new saturated cut-set and determines the best topological

- modifications to be made.

As a figure of merit, a network is said to be "undominated" if no other

network costing less has a nigher throughput. Alternatively, a network is

said to be "dominated" if a cheaper costing network provides higher throughput

performance.

The ACUT module is accessed through GRINDER in the ROUT module. It is

not a proper set of subroutines but rather a program running in the background

mode. Communications between GRINDER and ACUT are through transitory files.

The inputs to ACUT, which are specified via the ACT front-end program,

consist of four basic parts: the network configuration including some general

network properties, parameters specific to the ROUT program, the node to node

traffic matrix and parameters specific to the ACUT programs. An initial net-

work configuration is required by the ACUT programs.

123

The ROUT parameters define network performance criterion and constraints

and tolerances which will affect the accuracy and running time of the ROUT

programs in ACUT. Probably the most important parameter is the TARIF para-

meter that points to the tariff to be used in ACUT. The topological choices

that ACUT will have will be determined by the tariff defined in the TARIFF

EDITOR and used by the ROUT programs. In particular, the number of speed

options defined in a tariff will determine what modifications are available.

The node to node traffic matrix is also required for input.

The ACUT parameters are used as constraints in the ACUT module. The ACUT

parameters and their meanings are given below.

MAXML - MAXIMUM LINK MULTIPLICITY. In the course of adding links, ACUT

may add capacity to existing links by either upgrading to a higher capacity

option or adding another channel of the same capacity. This parameter is an

upper-bound on the number of channels on one link.

MAXTH - MAXIMUM THROUGHPUT LEVEL, MINTH - MINIMUM THROUGHPUT LEVL.

Expressed as a percentage of the base throughput level, these parameters con-

trol the design actions ACUT takes. If the network throughput is below NINTH,

ACUT will only add capacity to the network. If the throughput is above MAXTH,

ACUT will only delete capacity. Between these levels, ACUT will attempt to

both add and delete capacity in a given iteration.

DELMX - MAXIMUM OF DELETE CANDIDATES EXAMINED. During a delete operation

ACUJT will examine various delete possibilities. When a deletion is consid-

ered, tne routing optimization will be invoked. If the resulting network is

dominated, the next best delete candidate is examined again by invoking the

routing optimization, etc. This parameter controls the maximum number of

deletion candidates examined and, therefore, the number of times the routing

optimization is called at a particular design iteration. For small networks,

this number can be large since the routing optimization runs faster for

smaller networks. For larger networks, to speed up the design process, this

number should be rather small.

124

- -+ +- , - - -+- - r - w.. * * • -

-J

I.

Description Of ACUT Algorithm

The ACUT executive, upon determining that it has a starting topology and

the appropriate parameters, will iteratively call on ACUT to provide topology

modifications in the following manner:

1. Initialization. The routing program is called to determine the cost

* and throughput of the starting network.

2. Saturated Cut Determination. The cut determination algorithm is

called and it divides the nodes into two components. A node will either have

the component number of one component or the other, or it will be identified

as part of a chain in the cutest.

3. If the current throughput is below the maximum throughput require-

ment, then capacity is added across the saturated cut. The throughput is not

recalculated at this point.

4. If the current throughput is above the minimum throughput require-

ment, capacity, not across the cut, is deleted.

5. A check is then made for redundant cost. If the cost is not redun-

* dant, then it invokes the routing program to determine the flows and through-

put. At this point a check for dominance is made.

6. If the resultant throughput is below the minimum throughput require-

ment or the network is repetitive or dominated and a capacity deletion has

just occurred, then cancel the previous delete action and substitute another

delete action for it, as described in the section concerning deletion of capa-

city and go to step 5. This procedure will be referred to in the future as

"backtracking." If all available deletion options have been exhausted or the

user imposed limit on deletion attempts has been reached, then attempt to

implement the added capacity, if any, and go to step 5. Note that no deletion

has occurred at this stage.

7. If the network's throughput is accepted and the network is nonre-

petitive and undominated, then store the new network in the state vector.

Remove from the state vector all networks which are now dominated by the new

network. Return the add and/or delete actions to the ACUT executive.

8. If the conditions of step 7 are not satisfied then return no modifi-

cations to the ACUT executive.

125

" ,L9" + l , - , ' " " r " ' , + " / + " + + + '' ' - . . .

GLAD

The GLAD module designs local access networks which can be described as

follows:

Three levels of network hierarchy are involved. At the lowest level are

known access positions generically called terminal sites. They require con-

nection to known positions generically called centers, which form the highest

level of the hierarchy. The centers may actually correspond to backbone sites

which are not actual resource sites, but which provide appropriate intercon-

nection. Intermediate between these levels are positions generically called

concentrator sites. The concentrator sites are usually not precisely known.

The program seeks to connect the terminals to the centers as efficiently as

possible, placing concentrators at eligible sites where they are cost advanta-

geous. The programs can handle the simpler situation where no concentrator

sites are permitted and there are only two levels of hierarchy. All of the

known and potential sites are collectively called the nodes of the network.

A local access network can contain one or more partitions, each partition

consisting of a center node and its associated terminal nodes. Each partition

is designed independently. Partitions are produced in the HIER module. The

terminals are connected to a single concentrator and/or center by tree struc-

* tures. Each concentrator is connected directly to a center. Other topology

options, such as loops and dual homing, will be added in the future.

Lines attached to terminals will be called multipoint lines and lines

between concentrators and centers will be called trunks to distinguish them.

The user can impose a large variety of constraints on the design, such as

maximum number of concentrator ports available or line traffic capacity. The

TARIF routines are used by GLAD to cost lines.

126

- -*-.-* -1

Ag

The design of the concentrator sites and the connecting links that form

the network is developed in four distinct phases:

1. Partition of the terminal sites into sets associated with particular

centersv this is accomplished in the KIRR module

2. Formation of the center-of-mass (CON) clusters of termnals

3. Selection of concentrator sites and sines

4. Design of the interconnecting line layouts

The programs are set to handle 500 nodes. The arrays can be enlarged to

accommodate larger networks. The amoumt of storage needed is approximately

proportional to the number of nodes. Two sets of input data are required:

1. A detailed description of all the nodes and traffic involved in the

network

2. The network design constraints, program execution options, tariff

" selections and other required program parameters

HIER

The programs contained in the HIER module of GRINDER allow the user to

design and evaluate a 2-level hierarchical network architecture. This type of

configuration is typically used for a very large distributed network applica-

tion (up to several hundred host computers and several thousand terminals).

The two levels can be viewed as separate networks. The common structure of

large distributed networks is a multilevel hierarchical structure with a

backbone network at the higher level and local access networks at the lower

levels. Backbone and local access nets may be further subdivided into hierar-

chical sublevels. The backbone network is characterized by distributed traf-

fic requirements and is generally implemented using the packet-switching tech-,-

* -nology. Local access networks, on the other hand, have a centralized traffic

* pattern (all the traffic is to and from the gateway backbone node) and are,

* therefore, implemented with centralized techniques such as multiplexing, con-

centrating and polling.

127

The HIER module in GRINDER manages various programs that allow a user to

construct and analyze such a network configuration. In particular, he/she can

do the following:

1. Evaluate a manually created network

2. Automatically choose a new set of backbone nodes

3. Automatically assign the low level host and terminals to the backbone

nodes

4. Prepare the backbone network for analysis by ROUT

5. Optimize the local access network layouts (GLAD)

6. Derive a local point to point traffic requirements file from a back-

bone traffic matrix

7. Evaluate and cost the three components to such a network configura-

* tioni these are: the local access network, the backbone switches and the

backbone network cost

Each program in HIER can be viewed as a self-contained entity that per-

forms a particular task. There is no strict limitation on the order in which

each module is invoked. However, some modules expect the network configura-

tion to be in a particular state to perform its computation. There are no

performance evaluation modules in HIER. They are basically design and cost

oriented.h The input to the flIER module consists of the network configuration, host

nodes, terminal nodes, backbone nodes and the links that interconnect them.Li There are several properties of the nodes that are particularly important. .

The editing/design modules result in a network revision. These modules

add/delete nodes or links, assign and reassign low level nodes to backbone

nodes and generally reconfigure a network. The DASG Module deletes low level

links to one or all backbone nodes. It does not affect any links between two

backbone nodes. The ASG assigns each low level node to the nearest backbone

node, by adding a link to the backbone node. It also assiqns capacity to the

, 2

128""

added link. The DUHM Module performs the basic operation as ASG. The excep-

tion here is that a nonbackbone node that has been assigned dual homing capa-

bilities is linked to a second nearest backbone. The CBC Module selects back-

bone nodes using a clustering technique called CPART. Previous backbone nodes

S,are removed from the network.

The CBA Module is very similar in structure to CBC. CBA selects backbone

* nodes using an adding technique called APART. Previous backbone nodes are

removed from the network. GLAD is a special package that designs the local

*i. access networks revolving around one or more backbone nodes. After Glad execu- -

tion, HIER gets concentrator locations, if any were chosen, followed by all

new local access links. Cost, length, capacity and flow on each link are also

returned. HIER reports total cost of all local access links. The CSLO module

chooses Satellite-IMP locations given a set of backbone nodes.

The traffic manipulation modules perform the task of handling the large

amounts of traffic information of a large and complex network. The traffic

information, in the form of triples, is found in auxiliary files. These traf-

fic triples consist of two node labels and the traffic from the first node

label to the second node label. The user is required to have initialized the

backbone traffic matrix via the TRAFFIC EDITOR before entering HIER.

The Statistical Analysis modules offer the user short, concise reports of

network relationships. Summaries of cost, traffic, devices and hardware asso-

ciations become available through these modules. The BNA module reports as-

signments to one or more backbone nodes. It reports number of hosts and con-

centrators, terminal nodes, terminal devices, total hosts per concentrator

transmit traffic, total host per concentrator receive traffic, total terminal

transmit traffic, total terminal receive traffic and total traffic at the

specified backbone.

The LAL module calculates the total cost of local access lines in the

* network. It uses a preset tariff. The LAH module reports the total local

access hardware cost. By using node hardware type, this routine summarizes

all hardware costs for nonbackbone nodes. The CST module costs out one or

." more given backbone switches.

129

,1

ROUT

The programs contained in the ROUT module of GRINDER are quite powerful

in designing and evaluating the performance of a packet switched network. A Ii

designer typically wants to obtain a low cost configuration that meets speci-

fied performance measures (i.e., throughput, delay, etc.). A network data

base is created via the Network Editor. ROUT assumes that the nodes are

packet switches and the links are the data channels connecting them.

The analysis determines the maximum throughput and the optimal routes in 4
a packet switched network for a given source to destination traffic pattern,

under the condition that the end to end average delay T over all node pairs be

smaller than a specified constraint. The optimization of the routes is ob-

tained using nonlinear network flow techniques. The procedure iteratively

finds a sequence of improved alternate routes. Each iteration finds new

routes between some node pairs and optimally distributes the traffic between

the new routes and the existing routes. The optimization terminates when

further significant improvements in throughput can't be found or at the user's

direction. All requirements are scaled by the same factor during the through-

put optimization process. The basic optimization method is the Extremal Flow

(EF) Algorithm.

The inputs to the ROUT analysis consist of three basic parts: the net-

work configuration including some general network properties, parameters speci-

fic to the ROUT module and the node-to-node traffic matrix.

The configuration is created and maintained by the NETWORK EDITOR. The

ROUT analysis will only use those nodes in the NETWORK EDITOR that have hard-

ware type equal to

BKBN - for regu r Backbone nodes

GRST - for Ground Station nodes

!rATL - for Satellite nodes

130

* - Si

The current limitation on the maximum number of nodes is 65. 'e ROUT analy-

sis will fill in the following NETWORK EDITOR link properties for inspection

by the user:

1. Link cost ($/mo.)

2. Link length (miles)

3. The flow in both directions, if it is a link, or flow in directed

direction, if it is an arc

The ROUT parameters define network performance criteria and constraints,

the tariff that will be used for costing purposes and tolerances which will

affect the accuracy and running time of the analysis. The ROUT parameters are:

ITMAX - Desired number of Iterations. This parameter can control the

type of routing strategy that will be used. If ITMAX-1, the routing strategy

will be the initial min-hop routing. If ITMAX>I, alternate routing will be

performed. The first routing will always be min-hop routing but subsequent

iterations find performance improving alternate routes between some node pairs.

PKLEN - Average. Packet Length (KBITS). The average size of the packet

is listed in kilobits, including the packet header.

DELAY - Average. Packet Delay (SEC). The constraint on the end to end

average packet delay for all node pairs is in seconds. The program will maxi-

mize the throughput while maintaining this constraint.
PROVR - Protocol Overhead (FRACTION). This parameter models the overhead

associated with the particular protocol used. This value could reflect ACKS,

RFNMS, packet header length, etc., all the overhead that is proportional to

the data traffic. The program multiplies all the traffic requirements by

I+PROVR to get the actual traffic requirement (data + overhead) that the net-

work must carry. The throughput results reported by the analysis will be only

the actual data traffic. However, the flows reported on the links will in-

clude this overhead.

RUOVR - Routing Overhead (FRACTION). This parameter models the overhead

traffic the network must accoomodate because of routing and control informa-

tion. This could reflect routing table updates, network control information,

I., etc. RUOVR is, however, speed dependent. The program reduces each line capac-

ity by this fraction.

131
L9

II

BPRCS - Backbone Nodal Processing Time (SEC). This parameter specifies

the time a regular backbone node takes to process the average size packet

(assuming zero-load).

GPRCS - Ground Station Nodal Processing Time (SEC). This parameter is

the time a ground station node takes to p-ocess the average size packet

(assuming zero-load).

SPRCS - Satellite Nodal Processing Time (SEC). This parameter is the

time a satellite node takes to process the average size packet (assuming

zero-load).

TPROP - Terrestrial Line Propagation Delay 'SEC/MILE). This parameter is

used to compute the transmission delay on a terrestrial line.

SPROP - Satellite Line Propagation Delay. This parameter is used to

compute the transmission delay on a line between two satellite nodes.

MPRPR - Mixed-Media Line Propagation Delay (for Rout Analysis). This

parameter is used to compute the transmission delay on a mixed-media line.

This is the delay that will be used during the flow assignment portion of the

algorithm.

MPRPD - Mixed-Media Line Propagation Delay (for Delay Analysis). This

parameter is used to compute the transmission delay on a mixed media line.

This is the delay that will be used at the final delay evaluation.

THACC - Relative Throughput Accuracy. This parameter sets a stopping

condition for the analysis. If the relative throughput increase at a partic-

ular iteration is no greater than THACC, the analysis will stop.

TIACC - Time Delay Accuracy (SEC). The analysis program will attempt to
maintain the delay constraint DELAY + TIACC. The smaller the value of TIACC,

the longer the program will spend adjusting the throughput level to match the

delay constraint.

RTBSW - Save data for RTB; Yes or No. A flag that (if on) will save

various routing data for the RTB post-processor. This flag is currently

ignored as the RTB post-processor is not implemented.

TARIF - Tariff Option (selection Label). This points to the tariff slot

defined in the TARIFF EDITOR. This is the tariff that will be applied to cost

the network. The tariff should have been initialized before entering the ROUT

module.

132

- *..~--- - -

70

The performance of a packet switched network depends on the data traffic

that the nodes transmit and receive. The designer typically want0% a network

configuration that will give satisfactory performance under a specific traffic 1

load and pattern. The backbone node to node traffic matrix is created and

maintained by the TRAFFIC EDITOR. It should have been initialized by the user

before entering the ROUT module.

The tariff should have been initialized before entering the ROUT module.

The backbone node to node traffic matrix is created and maintained by the

Traffic Editor. It should have been initialized by the user before entering

the ROUT module.

After the user has set up the values of the ROUT parameters, node to node

traffic matrix and the tariff, he/she is ready to run the analysis. These

values will remain constant throughout a session except when the user changes

them. The "R" command is issued and the program responds with "Computations

Proceeding." Next, the network cost per month will be calculated, broken up

into total cost, line cost, hardware cost and per node hardware cost. Also,

each link's multiplicity will be determined. The program will next calculate

the base traffic requirement. It is this amount of traffic that the network

should satisfy. It is equivalent to the sum of all the entries in the node to

node traffic matrix, plus the uniform requirement. The program will then

compute and print out for each iteration the maximum throughput and the delay

constraint. The first iteration will be min-hop routing and for subsequent

iterations the program will attempt to deviate traffic flow from highly uti-

lized paths to underutilized paths. When the desired number of iterations is

reached, the optimization is stopped. The throughput is then calculated more

precisely using an exact muitiserver delay formula. This computation is too

time consuming to be used during the optimization, so it is only done at the

final iteration. However, %Then all the links have multiplicity of one, this

exact delay expression reduces to the approximate delay expression used in the

optimization. Therefore, there will be a difference in the maximum throughput

* only if there are links with multiplicity greater than one. When the user has

requested no more optimization iterations, the program will calculate some

133

IL I
-b"- - ~ - - -

final statistics. The program will compute the delay (using the exact delay

expression) at which the base traffic requirement can be satisfied (if it can

be satisfied at all).

There are commands which allow the user to look at various properties of

each link. These include capacity, traffic flow, channel multiplicity, chan-

nel length in miles and cost. Another command will display the throughput-

delay table. After each analysis, a table is generated that shows the average

packet delay for various levels of throughput. The throughput at saturation

(infinite delay) is divided into 50 equal increments and the delay is evalu-

ated at each increment using the optimized flow pattern.

Post processors are modules that are generally called after the execution

of the ROUT analysis. Because they use many of the data structures that the

analysis routines create, an analysis should be run before any post processor

is invoked. The post processors provide more detailed information on delay,

flow and structural properties and characteristics of the topology under con-

sideration.

The END post processor evaluates and generates end to end delay 3tatis-

tics. The user can obtain end to end delay between any and all nodes pairs,

average end to end delay (averaged over all node pairs), maximum end to endi delay, distribution of end to end delays, average and maximum round trip

r- delays, distribution of round trip delays and routes between any and all node

pairs on the min delay path. The delay calculation in END is performed assum-

ing three classes (at most) of traffic. In case of multipath routing the

delay is evaluated along the lowest delay route. The END parameters allow the

user to specify his/her priority structure, the level of throughput at which

the delay is to be evaluated and the average packet size to be used.

The HOP post processor evaluates and generates min-hop distance statis-

tics. The evaluation is strictly topological. Traffic flow, capacity and

length of the lines are ignored. It also allows the evaluation of candidate

links (links that might be added to the configuration to improve min-hop

paths). The HOP post processor gives an evaluation of the current configura-

tion and then, if desired, evaluates that configuration with each candidate

134

link in the topology. In particular, the user can obtain sin-hop distance for

any and all node pairs, average min-hop distance, maximum min-hop distance,

distribution of min-hop distances, routes between any and all node pairs on

the sin-hop path and assistance in deciding what links to add to reduce the

maximum and average sin-hop distance.

The CAND submodule allows convenient and quick evaluation of a list of

links that could be added to reduce the maximum and average min-hop distance.

The user creates a list of candidates links which is then evaluated. The

evaluation considers the current configuration augmented by each candidate

link. In particular, the user can obtain the cost of each candidate link, the

. maximum and average sin-hop distance for the configuration augmented with each

candidate link and the reduction per thousand dollars of the maximum and

average min-hop distance. The current limitation on the size of the list is

20 links.

The CUT post processor assists the user in identifying traffic bottle-

necks in the network. It is based on the concept of a "cut-set." A good way

to increase the network's capacity is to increase line capacity in the cut or

add additional lines to the cut. The CUT module isolates the cut-set for the

user, but does not decide how to increase the capacity of the cut and, there-

fore, the capacity of the network. The CUT module simply determines the

cut-set.

Mixed Media Networks

Mixed media networks are networks with both terrestrial and satellite

links. Two subproblems in particular make this general problem different from

the design of a "pure" terrestrial network. These particular subproblems

involve modeling satellite links and optimizing the number and location of

4 ~ satellite ground stations.

The selection of the most effective architecture (i.e., number of levels

and type of access at each level) is the first task usually faced in the

J design of a large network. After the architecture is selected, network design

. 135

then determines a topology that, in some sense, minimizes line and nodal pro-

- cessor costs. For the general case where a network can mix terrestrial and

satellite transmission media, this task can be broken down into the following

-. i! subproblems:

1. Preliminary clustering of user installations

2. Selection of backbone nodal processor locations

3 Local access design

4. Modeling of satellite transmission media

5. Selection of satellite switch locations

6. Terrestrial subnet design

Of the six subproblems listed above, 1, 2, 3, and 6, are common both to net-

works which employ only terrestrial transmission media and to networks which

employ mixed media. The remaining two are totally irrelevant for pure ter-

restrial network3. They represent the additional design effort required to

deal with the satellite segment of a mixed media network.

In representing the satellite media by appropriate models, the following

assumptions are made:

1. The s' ,llite is a linear, frequency translating repeater

2. Both uplink and downlink bandwidth allocation are each W Hz

3. The uplink and downlink carrier to noise ratios are such that the

satellite transmission media are downlink limited and can support a total

downlink data rate of C bps in a non-random access mode of operation

4. The number and locations of the satellite ground stations are speci-

fied.

With these assaa:ptions the type of model used to represent the satellite

media depends upon the satellite access scheme employed. Tn enhancing ex-

isting design tools to deal with mixed media, the following three types of

satellite access scheme ve been considered: point to point, channel divi-

sion multiple access and random or reservation multiple access. (The reserva-

tion multiple access is a form of what is commonly called "Demand Assignment

Multiple Access".)

136

LIt

"' -: , : . . - . • .-

Avai lability

GRINDER is available on the ARPANET on the ISIA computer using the TENEX

operating system.

Information Source

This information was obtained from Reference 44.

137

. , .- . ', ". • " - - - -. _ - . - . . •- - - - t - - -.

CHAPTER 6

SUGGESTED APPROACH FOR NETWORK DESIGN TOOL

THE EHF NETWORK DESIGN PROBLEM

The EHF network design problem can be decomposed into the following ile-

ments:

1. Architecture. This element defines all of the network related func-

tions and the supporting protocols. It places these functions and protocols

into a structure following the ISO-OSI reference model.

2. Service Definition. This element takes the given user requirements

and defines the network services that will support those requirements.

3. Resource Design. This element performs the design tradeoff on the

physical elements of the system including the satellite antenna c)verage

schemes, time and frequency channelization for the uplink and downlink and

switching designs.

4. Resource Allocation. This element defines methods for sharing the

resources (communication channels) among users to provide the desired services.

5. Protocol Designs. This element defines the functions and design of

the protocols required to implement the network functions. The various proto-

cols include:

a. Service (session) setup and teardown

b. Channel access

c. Intersatellite routing

d. Intersatellite flow control

e. Service preemption

f. Network control transfer

g. Dynamic network maintenance

(1) Dynamic network topology

(2) Dynamic channel effects

6. Data Base Design. This element defines the data bases at the termi-

nal nodes and on board the satellite that are required to support the network

* protocols.

I .

j 139

I '*, - - * ". - " t - , - I -:' *' • " - -"' ,. , --- --- --

7. Protocol Validation. This element verifies that the specified pro-

tocols are complete and are logically correc'.

MENTS

DESIGN ALLOCATION -

:' I PROTOCOL DAT BASE

I 1 DESIGNS DESIGNS J

NETWOPK DESIGN
T PROTOCOL SPECIFICATIONS

VALIDATION

Figure 24. Network design tool applications.

Figure 24 shows the relationship between these design elements and shows

which elements may be supported by the network design tool.

NETWORK DESIGN TOOL APPROACHES

The existing design tools described in Chapter 5 are useful for networks

with fixed topology and unjammed channels. Most of the techniques apply only

to point-to-point designs and do not apply to broadcast nets. The most well

developed analytical methods are limited to topological designs and do not aid

in the design of protocols themselves.

The following sections outline a network design tool for protocol design

and network performance characterization. It uses several of the approaches

listed in Table 3. These include queueing models, graph theory, finite state

machine models and discrete event simulation.

140

Resource Design

The resource design problem requires a top level model of the EHF system

including:

1. Uplink and downlink channelization

2. Service (network) requirements 1

3. Antenna configuration and coverage

4. Antenna beam-to-receiver switching scheme

A question is the availability of a channel (uplink and downlink) for a ser-

vice request from a particular geographic area. The design parameters are the

* number of uplink frequency channels, the number of frequency channel groupings

(that is, independently switchable entities) and assignment of uplink fre-

quency channels to uplink antenna beams.

Under certain simplifying assumptions this design problem can be ap-

proached analytically, as in Reference 34. Simulation methods are required

when the traffic statistics are non-Poisson or when satellite motion is con-

sidered. A hybrid approach may be used to include the dynamics of actual

antenna patterns and specific user distributions over the earth.

Figure 25 illustrates a possible approach. User distribution and antenna

coverage is determined by stored models. This information is combiled with

the given uplink and downlink channelization specified by the input data. At
this point, analytical or simulation methods may be used to determine the

channel availability and maximum channel capacity. Time varying character-

istics may also be accommodated within the model, as shown in the figure.

Resource Allocation

The resource allocation problem occurs on (at least) two levels in the

EHF system. First, there is the allocation, by the on-board resource con-

troller, of uplink and downlink resources to a particular service. A service

may be a network, so that within a particular service, a net controller may

perform the channel access function among the participants in that service.

141

- - •- .- - - - - - - - - - .-- - -- •
I
d----

MODEL INPUTS: -TRAFFIC CHARACTERISTICS
CONNECTIVITY MATRIX

UPLINK DESCRIPTION GENERATE
DOWNLINK DESCRIPTION CANDIDATE UPLINKDAT

CHANNELIZATIONANTENNA, PTTERN BE SSIGNMENTS

MODELS N G
GENERATE-'

POSSIBLE NODEAL TI
ANALYZE FOR CHANNELCOVERAGE PATTER NS,/

. AVAILABILITY, CHANNEL
NODE DISTRIBUION C1 CAPACITY, SYSTEM ,

MODEL
COST AND COMPLEXITY

PROVIDE CANDIDATE

CHANNELIZATION AND

SWITCHING DESIGNS FOR

RESOURCE ALLOCATION

ANALYSIS

Figure 25. Resource design.

The model parameters for the satellite resource allocation problem are

determined by the resource design. The resource allocation analysis is a more

detailed analysis that includes blocking probabilities, queue lengths and

throughput rates for a given uplink and downlink configuration. The system

can be described by a multiserver queueing model in cascade with a traffic

multiplier to account for the multibeam broadcast downlink (Figure 26). This

model can be characterized analytically for Poisson traffic statistics (ar-

rival rates). If the traffic statistics are non-Poisson, or if the statistics

are time varying, a simulation method must be used.

The service channel, once assigned by the satellite resource controller,

has well known characteristics that remain reasonably constant. The EHF sys-

tem supports a wide variety of access schemes including TDMA, polling, adap-

tive polling and DAI4A. It supports both in-band and out-of-band control.

There is no general technique for analyzing the performance of all these

schemes. However, the use of queueing models appears feasible since the

6 channel may be modeled as a single server queue in tandem with a service multi-

plier (to account for the multiple repetitions required for downlink broadcast

.- coverage) and another queue (see Figure 27). Again, if the traffic statistics

are non-Poisson, or if the statistics and/or traffic matrix are time varying,

a simulation method muQt be used.

142

U,

2 0

3&

UPLINK DOWNLINKj

Figure 26. Channel access model for the satellite allocation problem.

42

,. P1 UPLINK DOWNLINK

L

Figure 27. Channel access model.

143

Protocol Design

The designs of network protocols are usually done in an ad hoc fashion; p
however, the network design tool can be used as a design aid, if not the pri-

mary design method. For example, the network design tool may store descrip-

tions of the protocols, as finite state inachine models and/or zequence dia- 4:

grams, that could be easily modified. This tool also cou]d be used easily to

expand the protocol descriptions to include error recovery techniques and

. timeout procedures. The tool also could perform worst case timing analysis

for a protocol to show how long a cycle of events takes. Finally, it could

provide a precise specification of a protocol to the designer for the protocol

validation procedure.

Performance validation of most protocols will require simulation of the

protocol. This may be done in an isolated fashion or it may be done in a

structured, modular way as was described in Chapter 3 for the VANS system.

This is even more attractive if the simulation model is structured to follow

the ISO-OSI reference model. Using this approach, protocols may be analyzed

along with known input data or together with another protocol which provides

the input. A simulation tool may be designed to accommodate a general set of

protocols, a subset of which may be selected and setup according to a user
defined data base.

Protocol Validation

Protocol validation can be performed in an automated fashion using finite

state machine models of the protocols. There is a limitation on this approach

due to the number of states that can be accommodated, so the protocol models

must be fairly simple. In addition, at present only the empty channel case

(that is, pending actions are not allowed to queue up and actions are per-

formed instantaneously) is accommodated. Within these restrictions, the vali-

dation procedure provides design rules to ensure valid protocols and checks

for deadlock conditions and infinite loops.

144

AETWORK DESIGN TOOL OUTLINE

The architecture of the network design tool is outlined in Figure 28.

The tool has three distinct elements, connected by an interactive executive.

The elements are:

1. A system simulator, consisting of a network editor, a channel editor

and a simulator

2. A resource alocation designer

3. A protocol designer, consisting of the protocol design tool and the

protocol validation module

(INTERACTIVE EXECUTIVE

NOD NTWOKRESOURCE PROTOCOL
EDITO ETWORK SIMULATOR ALLOCATION DESIGND DESIGNER TOOL

SEQUE NCE STATE TIMING

DIAGRAMS IDIAGRAMS 1ANALYSIS1

I...;. ~NOE NUUN THOY AIATOOROOO

FILE FIL I

REPORT REPORT

Figure 28. Network design tool architecture.

* ". System Simulator

As described previously, the system simulator uses a modular approach

where net activities are divided into distinct protocol areas. Interfaces

between these areas us. a well defined interface standard so that different

protocols may be easily exchanged. A protocol may be anlyzed in isolation by

substituting a dumuy duta base at the protocol's input interface.

145

" • ' • , _ " .' t "- .,, ,. " ,' ' _ " " " " " " " _ " .

The designer defines the simulation by using the node and network edi-

tors. The node editor defines the protocol as viewed by a node for the data

link, network and transport layers. Nodes can be defined at several levels

(host, switching, backbone). The network editor defines the actual physical

channel characteristics such as antenna coverage, channel data rate and time

and frequency channelization. It also defines the desired network properties

such as access technique, switching, connectivity and traffic characteristics.

It may include dynamic modeling characteristics such as jamming, node move-

ment, satellite movement and node destruction.

The simulator uses the files created by the editors to construct the sirmu-

lation model and execute the sinulation. It produces an output report as

specified by the operator. The output can include steady state and transient

results.

An advantage of this approach is that it can lead directly to a testbed

implementation and then to a feasibility model, all following the same layered

architecture.

Resource Allocation Designer

The resource allocation designer uses analytical techniques to perform

topological optimizations and link designs. It uses the techniques discussed

in Chapter 3 to optimize point to point network layouts and queueing analysis

to design channelization schemes for satellite networks (see Reference 34).

It also performs the analysis of multiple access schemes that fit within the

constraints of the queueing models as outlined in the section on resource

allocation.

Protocol Design Tool

P4

The protocol design tool, as discussed earlier, operates as an aid to the

designer. Since even simple protocols often become very complicated to des-

cribe, this tool provides a way of maintaining, modifying and reporting the

146

. . . t - , . t -..-

tie

designs. It can also guide the designer by checking for valid designs fol-
38lowing the rules provided by Tamaki. The protocol design tool will trans-

form sequence diagrams (action-response versus time descriptions) into finite

state machine models and vice versa. An automated protocol validation proce-

dure will be available to analyze the finite state machine models for dead-38
locks and infinite loops.3 8

Network Testbed Approach

The network testbed is an approach that appears attractive for network

feasibility testing in cases where a single topological hierarchy is invol%-d

and channel effects, such as jaming and platform motion, are not too complex.

The approach is to create essentially a local net consisting of a number of

general purpose processors tied to a high speed bus (Figure 29). Each node is

emulated by a microcomputer, and a minicomputer is used as the central con-

troller (if required). The minicomputer may also implement the channel model

by intercepting all messages and performing processing to represent delay,

message loss or degradation. The minicomputer also handlen all program load-

ing functions to minimize the cost of the microcomputers.

M1 4

i

,

*

GENERAL PURPOSE MA~SS
MINI-COMPUTER STCRAG

CENTRAL CONTROL

*CI4ANNEt MODEL

PERFORMANCE ANALYSIS =DISPLAY/

*DOWNLINE LOADING PITU

BUUS
I NTERFACE

PUPSE E~ T

GENERALGEEAGNRL

SPROCESSOR j4 PROCESSOR 14 PROCESSOR

L Figure 29. Network testbed.

148

- o - k , _ • - - '

REFERENCES AND BIBLIOGRAPHY

I

1. I. M. Soi anid K. K. Aggarwal, A Review of Computer-Comunication Network
Classification Schemes, IEEE Communications Magazine, pp 24-32, March
1981.

2. H. Zimmermann, OSI Reference Model - The ISO Model of Architecture for
Open System Interconnection, IBM Transactions on Comhunications, Vol.
CON-28, No. 4, pp 425-432, April 1980.

3. Roy D. Rosner and Ben Springer, Circuit and Packet Switching, Computer

Networks, pp 7-26, 1976.

4. Fouad A. Tobagi, Multiaccess Protocols in Packet Communication Systems,
IEEE Transactions on Communications, Vol. CON-28, No. 4, pp 468-488,
April 1980.

5. H. Lee, On Design of the Least Vulnerable Networks of Minimum Delay,
Department of Electrical Engineering and Computer Science, Northwestern

University.

6. L. Kleinrock, Queueing Theory, Vol. I, John Wiley and Sons, New York,
1975.

7. L. Kleinrock, Queueing Theory, Vol. II, John Wiley and Sons, New York,
1976.

8. L. Kleinrock, Communication Nets, McGraw-Hill, New York, 1964.

9. Martin G. Kienzie and K. C. Sevcik, Survey of Analytic Queueing Network
Models of Computer Systems, 1979 Conference on Simulation, Measurement
and Modeling of Computer Systems.

10. L. Fratta and U. Montanari, Analytical Techniques for Computers Networks
Analysis and Design, Computer Architectures and Networks, North-Holland
Publishing Company, Amsterdam, 1974.

11. Gregor V. Bochmann, Finite State Description of Comunication Protocols,
Computer Networks, North-Holland Publishing Company, Amsterdam, Vol. 2,
1978.

12. G. Michael Schneider, The VANS System, Proceedings of COMPCON Computer
Communications Netvorks, September 5-8, 1978, Washington, D. C.

13. G. Michael Schneider, A Modeling Package for Simulation of Computer

Networks, Simulation, December 1978.

14. G. Michael Schneider, A Structural Approach to Computer Network Simula-
tion, Computer Science Department, University of Minnesota, Technical
Report 75-20, December 1975.

149

15. J. C. Browne, K. M. Chandy, R. M. Brown, T. W. Keller and D. Towsley,
Hierarchical Techniques for Development of Realistic Models of Complex
Computer Systems, Computer Architectures and Networks, North-Holland
Publishing Company, Amsterdam, 1974.

16. Alf Hansen, The EIN Network Simulation, Computer Networks and Simula-
tion, North-Holland Publishing Cumpany, New York, 1978.

* 17. Antero Remes, Simulation Techniques in Network Design, Computer Networks
and Simulation, North-Holland Publishing Company, New York, 1978.

18. John M. McQuillan and Ira Richer, A New Network Simulation Technique,
Computer Networks and Simulation, North-Holland Publishing Company, New
York, 1978.

19. J. Kent Peacock, J. W. Wong and Eric Manning, A Distributed Approach to
Queueing Network Simulation, 1979 Winter Simulation Conference, December
3-5, 1979.

20. K. M. Chandy, Victor Holmes and J. Misra, Distributed Simulation of
Networks, Computer Networks, Vol. 3, 1979.

21. J. Kent Peacock, J. W. Wong and Eric G. Manning, Distributed Simulation
Using a Network of Processors, Computer Networks, Vol. 3, 1979.

22. Fouad A. Tobagi, Mario Gerla, Richard W. Peebles and Eric G. Manning,
Modeling and Measurement Techniques in Packet Communication Networks,
Proceedings of the IEEE, Vol. 66, No. 11, November 1978.

23. H. Gomaa, A. Hybrid Simulation/Regression Modeling Approach for Evalu-
ating Multiprogramming Computer Systems, Computer Performance, edited by
K. M. Chandy and M. Reiser, North-Holland Publishing Company, New York,
1977.

' 24. Modular Interactive Network Design (MIND) User's Guide, Version 5.1,
Network Analysis Corporation.

25. Howard Cravis, Communications Network Analysis, Lexington Books,
Lexington, MA, 1981.

26. J. Schwandt, An Approach to Use Evaluation Nets for the Performance
Evaluation of Transaction-Oriented Business Ccmputer Systems, Computer
Performance, edited by K. M. Chandy and M. Reiser, North-Holland
Publishing Company, New York, 1977.

27. R. Razouk and G. Estrin, Validation of the X.21 Interface Specification
Using SARA, NBS Trends and Applications Symposium, May 29, 1980.

28. Gerald Estrin, A Methodology for Design of Digital Systems - Supported
by SARA at the Age of One, National Computer Conference, 1978.

150

29. Rami R. Razouk, Computer-Aided Design and Evaluation of Digital Computer
Systems, February 1981, UCLA Computer So-.ence Department, Report No.
CSD-810205.

30. M. Parent and I. R. I. A. Laboria, Graphical Models and the LAM Hardware
Discrete Event Simulator, Computer Performance, edited by K. M. Chandy

*and M. Riser, North-Holland Publishing Company, New York, 1977.

31. Symposium on Modeling and Analysis of Data Networks, National Science
Foundation, March 1976.

32. E. Gelenbe and I. Mitrani, Analysis and Synthesis of Computer Systems,
Academic Press, New York, 1980.

33. G. J. Foschini, on Heavy Traffic Diffusion Analysis and Dynamic Routing
in Packet Switched Networks, Computer Performance, edited by K. M.
Chandy and M. Reiser, North-Holland Publishing Company, New York, 1977.

34. Izhak Rubin, EHF Network Analysis Model, Final Report for NOSC Contract
No. N66001-B1-M-A256, January 1982.

35. K. M. Chandy and J. Misra, Asynchronous Distributed Simulation via a
*-, Sequence of Parallel Computations, Comunuications of the ACM, Vol. 24,

No. 11, April 1981.

36. M. Gerla and L. Kleinrock, On the Topologict1 Design of Distributed
Computer Networks, IEEE Transactions on Communications, Vol. COM-25, No.
1, January 1977.

37. Mischa Schwartz, Computer-Communicacion Network Design and Analysis,
Prentice-Hall, New 3ersey, 1977.

38. Jeanne K. Tamaki, Finite State Machines in Protocol Validation, NOSC
Technical Report 842, 10 September 1982.

39. A. Danthine, Protocol Representation with Finite State Models, IEEE
Transactions on Communications, Vol. COM-28, Fo. 4, April 1980.

40. Carl A. Sunshine, Survey of Protocol Definition and Verification
Techniques, in Advances in Computer Communications and Networking,
edited by Wesley Chu, Artech House, Denham, MA, 1977.

41. P. M. Merlin, Specification and Validation of Protocols, IEEE
Transactions on Communications, Vol. COM-27, No. 11, November 1979.

0 42. Z. Hayes, ACDS Data Requirements for a Performance Oriented Design (POD)
Model, NOSC Memorandum of 20 January 1982.

43. POD Concept Paper, BQS Systems, Lincoln, MA, 31 August 1981.

44. GRINDER User's and Programmer's Guide, June 1977.

151

.- Z

45. G. Bochman and C. Sunshine, Formal Methods in Communication Protocol
Design, IEEE Transactions on Communications, Vol. COM-27, No. 4, April
1980.

46. R. R. Boorstyn and H. Frank, Large-Scale Network Topological Optimiza-
tion, IEEE Transactions on Communications, Vol. COM-25, No. I, January

S-- 1977.

47. Gerald Estrin, Modeling for Synthesis - The Gap Between Intent and
Behavior, Proceedings of Symposium on Design Automation and Micropro-
cessors, Palo Alto, CA, February 1977.

48. Howard Frand and Wushow Chou, Topological Optimization of Computer Net-
works, Proceedings of the IEEE, Vol. 60, No. 11, November 1972.

49. 0. Spanio, Modeling of Local Computer Networks, Computer Networks,
North-Holland Publishing Company, Vol. 3, 1979.

50. A. S. Tannenbaum, Computer Networks, Prentice-Hall, New Jersey, 1981.

L

152

